огромного прощения за то что отнимаю у вас время, но мне нужна в решении списка , указанных внизу. я понимаю что это довольно много за такое мизерное количество , но любая будет оценена высоко.
Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
принимать Х изменяясь в своей области определения . Кроме того важно
сразу отметить что если вы ищете аналитическую закономерность (виде
некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать
любой из стандартных методов интерполяции : линейную, дробно-
линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора
по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1;
многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2-
подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3
а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений:
P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1;
P(X2)=1+A1*1+A2*1*1=2
P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк
Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2
Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости
между X и Y. Естественно этот результат не единственен.
Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
Раскрыть скобки и привести подобные слагаемые.
а² + 2ab + b² - 2b *a - 2b * b = a² - b²
а² + 2ab + b² - 2ab - 2b² = a² - b²
a² + (2ab - 2ab) + (b² - 2b² ) = a² - b²
a² + (-b²) = a² - b²
a² - b² = a² - b²
Разложить на множители, затем раскрыть скобки.
(а+b)(a+b) - 2b(a+b) = a² - b²
(a+b)(a+b - 2b) = a² - b²
(a+b)(a-b) = a² - b²
a² - b² = a² - b²
При решении использованы формулы сокращенного умножения:
1) квадрат суммы
(а+b)² = a² + 2ab + b²
2) разность квадратов
а² - b² = (a-b)(a+b)