С самого рождения демонстрировал необыкновенную физическую силу и храбрость, но при этом из-за враждебности Геры должен был подчиняться своему родственнику Еврисфею. В юности Геракл обеспечил родному городу победу над Эргином. В припадке безумия он убил собственных сыновей, а потому был вынужден пойти на службу к Еврисфею. По приказу последнего Геракл совершил двенадцать подвигов: победил немейского льва и лернейскую гидру, поймал керинейскую лань и эриманфского вепря, убил стимфалийских птиц, очистил авгиевы конюшни, укротил критского быка, завладел конями Диомеда, поясом Ипполиты, коровами Гериона, привёл к Еврисфею Цербера из загробного мира и принёс яблоки Гесперид.
Если функция y = f(x) непрерывна на отрезке [a, b], то она достигает на этом отрезке наименьшего и наибольшего значений. Это, как уже говорилось, может произойти либо в точках экстремума, либо на концах отрезка. Поэтому для нахождения наименьшего и наибольшего значений функции, непрерывной на отрезке [a, b], нужно вычислить её значения во всех критических точках и на концах отрезка, а затем выбрать из них наименьшее и наибольшее.
Пусть, например, требуется определить наибольшее значение функции f(x) на отрезке [a, b]. Для этого следует найти все её критические точки, лежащие на [a, b].
Пусть, например, требуется определить наибольшее значение функции f(x) на отрезке [a, b]. Для этого следует найти все её критические точки, лежащие на [a, b].