Выполняем построение графика функции. Таблица точек: x -3 -2 -1 0 1 2 3 4 5 y 20 12 6 2 0 0 2 6 12 (график прикреплен к решению как фото)
Теперь разберемся с прямой y=m. Это прямая, параллельная оси абцисс. Одна общая точка с графиком будет при прохождении прямой через вершину параболы, которой является наш график. Еще нам известно, что функция имеет разрыв в точке x=3, значит через этот разрыв можно провести еще одну прямую, имеющую с графиком одну общую точку.
Абциссу параболы находим по формуле
Теперь ордината
Первое решение найдено, теперь второе
ответ: прямая y=m имеет с графиком одну общую точку при или
Объяснение:
Сумма всех чисел:
13+14+15+...+25 = 247.
Если вычесть чёрное число, то получится число, кратное 4.
Если его разделить на 4, то получится сумма красных, синих, жёлтых и зелёных чисел, причем все суммы одинаковы.
При этом мы знаем, что 13 - красное, 15 - жёлтое, а 23 - синее.
Черным может быть только одно из трёх чисел:
15 (тогда сумма 232 = 4*58), или 19 (228 = 4*57), или 23 (224 = 4*56).
Но 15 и 23 уже заняты, поэтому чёрное число : 19.
Без него сумма всех остальных 228, а сумма в каждой группе равна 57.
Красные: 13, 20, 24.
Жёлтые: 15, 17, 25.
Синие: 23, 16, 18.
Зеленые: 14, 21, 22.
Это единственный разобрать все числа на 4 суммы по 57.
Функция не определена в точке x=3
Решение квадратного уравнения
Выполняем построение графика функции.
Таблица точек:
x -3 -2 -1 0 1 2 3 4 5
y 20 12 6 2 0 0 2 6 12
(график прикреплен к решению как фото)
Теперь разберемся с прямой y=m. Это прямая, параллельная оси абцисс. Одна общая точка с графиком будет при прохождении прямой через вершину параболы, которой является наш график. Еще нам известно, что функция имеет разрыв в точке x=3, значит через этот разрыв можно провести еще одну прямую, имеющую с графиком одну общую точку.
Абциссу параболы находим по формуле
Теперь ордината
Первое решение найдено, теперь второе
ответ: прямая y=m имеет с графиком одну общую точку при или