Округляя точные числа А до трёх значащих цифр, определить абсолютную и относительную погрешности полученных чисел, если А=0,1455 (на листочке если можно)
расстояние 96 км; скорость течения --- 5 км/час; время против течения --- ?,час, но на 10>, чем по течению; собств. скорость лодки ? км/час Решение. Х км/час скорость лодки в неподвижной воде ( собственная скорость ); (Х - 5) км/час скорость против течения; 96/(Х-5) час время, затраченное против течения; (Х + 5) км/час скорость по течению; 96/(Х+5) час время, затраченное по течению; 96/(Х-5) - 96/(Х+5) = 10 (час) разница во времени по условию; приведем дроби к общему знаменателю (Х+5)(Х-5) = (Х^2 - 25) и умножим на него все члены уравнения: 96(Х+5) - 96*(Х-5) = 10*(X^2 - 25); 96Х + 96*5 - 96Х + 96*5 = 10X^2 - 250; 10Х^2 = 1210; X^2 = 121; Х = 11(км/час). Отрицательную скорость ( второй корень уравнения) а расчет не принимаем! ответ : Скорость лодки в неподвижной воде 11 км/час. Проверка: 96:(11-6) - 96:(11+6) = 10; 10 = 10
скорость течения --- 5 км/час;
время против течения --- ?,час, но на 10>, чем по течению;
собств. скорость лодки ? км/час
Решение.
Х км/час скорость лодки в неподвижной воде ( собственная скорость );
(Х - 5) км/час скорость против течения;
96/(Х-5) час время, затраченное против течения;
(Х + 5) км/час скорость по течению;
96/(Х+5) час время, затраченное по течению;
96/(Х-5) - 96/(Х+5) = 10 (час) разница во времени по условию;
приведем дроби к общему знаменателю (Х+5)(Х-5) = (Х^2 - 25) и умножим на него все члены уравнения:
96(Х+5) - 96*(Х-5) = 10*(X^2 - 25);
96Х + 96*5 - 96Х + 96*5 = 10X^2 - 250;
10Х^2 = 1210; X^2 = 121;
Х = 11(км/час).
Отрицательную скорость ( второй корень уравнения) а расчет не принимаем!
ответ : Скорость лодки в неподвижной воде 11 км/час.
Проверка: 96:(11-6) - 96:(11+6) = 10; 10 = 10
Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так