Omben! Dow
в 2
Домашнее задание: решить на выбор одну из задач:
Задача 1: С 1593 года Москву защищали четыре линии укреплений: Кремль, Китай-город,
Белый город и Скородом.
Белый город имел на 17 башен больше, чем Китай-город, Скородом - в два раза больше, чем
Белый город. Известно, что Скородом имел на 46 башен больше, чем Китай – город Сколько
башен имела каждая линия укреплений?
Задача 2. Защитники Сергиева и Печерского монастырей и Смоленской крепости выдержали
осады польских войск 164 недели. Смоленск выдержал осаду во времени в 15 раз дольше,
чем Печерский монастырь. Сергиев монастырь сражался на 22 недели меньше, чем смоляне.
Сколько недель сумели сдерживать натиск польских войск защитники названных монастырей
и Смоленской крепости?
Решите вторую✨
Производная этой функции равна:
Так как переменная производной находится в знаменателе, то производная не равна 0 и поэтому функция не имеет ни минимума, ни максимума.
1 f(x) = (- 3 / (x + 1)³) - 2 Область определения функции
Точки, в которых функция точно не определена:x1 = -1.
Функция только убывающая:
-1 > x >-∞ и ∞ > x >-1.
Точки пересечения с осью координат X График функции пересекает ось X при f = , значит надо решить уравнение: 1 -------- - 2 = 0 3 (x + 1) Точки пересечения с осью X:Аналитическое решение 2/3 2 x1 = -1 + ---- 2 Численное решениеx1 = -0.206299474016
Точки пересечения с осью координат YГрафик пересекает ось Y, когда x равняется 0:подставляем x = 0 в 1/((x + 1)^3) - 2.1 -- - 2 3 1 Результат:f(0) = -1Точка:(0, -1)
График функции f = 1/((x + 1)^3) приведен в приложении.
2Экстремумы функции. Для того, чтобы найти экстремумы,нужно решить уравнениеd --(f(x)) = 0 dx (производная равна нулю),и корни этого уравнения будут экстремумами данной функции:d --(f(x)) = dx -3 ---------------- = 0 3 (x + 1)*(x + 1) Решаем это уравнение. Решения не найдены,значит экстремумов у функции нет
Точки перегибов. Найдем точки перегибов, для этого надо решить уравнение 2 d ---(f(x)) = 0 2 dx (вторая производная равняется нулю),корни полученного уравнения будут точками перегибов для указанного графика функции, 2 d ---(f(x)) = 2 dx 12 -------- = 0 5 (1 + x) Решаем это уравнение. Решения не найдены,значит перегибов у функции нет
Вертикальные асимптоты. Есть:x1 = -1
Горизонтальные асимптоты. Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 1 lim -------- - 2 = -2 x->-oo 3 (x + 1) значит,уравнение горизонтальной асимптоты слева:y = -2 1 lim -------- - 2 = -2 x->oo 3 (x + 1) значит,уравнение горизонтальной асимптоты справа:y = -2
Наклонные асимптоты. Наклонную асимптоту можно найти, подсчитав предел функции 1/((x + 1)^3) - 2, делённой на x при x->+oo и x->-oo 1 -------- - 2 3 (x + 1) lim ------------ = 0 x->-oo x значит,наклонная совпадает с горизонтальной асимптотой справа 1 -------- - 2 3 (x + 1) lim ------------ = 0 x->oo x значит,наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции. Проверим функцию чётна или нечётна с соотношений f = f(-x) и f = -f(-x).Итак, проверяем: 1 1 -------- - 2 = -2 + -------- 3 3 (x + 1) (1 - x) - Нет 1 1 -------- - 2 = 2 - -------- 3 3 (x + 1) (1 - x) - Нет, значит, функция не является ни чётной, ни нечётной.
При x < 1 [x - 1] = 1 - x
x^2 + 3(1 - x) - 7 > 0
x^2 - 3x - + 3 - 7 > 0
x^2 - 3x - 4 > 0
(x - 4)(x + 1) > 0
x = (-oo; -1) U (4; +oo)
Но по условию x < 1, поэтому
x = (-oo; -1)
При x >= 1 [x - 1] = x - 1
x^2 + 3(x - 1) - 7 > 0
x^2 + 3x - 3 - 7 > 0
x^2 + 3x - 10 > 0
(x + 5)(x - 2) > 0
x = (-oo; -5) U (2; +oo)
Но по условию x > 1, поэтому
x = (2; +oo)
ответ: (-oo; -1) U (2; +oo)
Вторая делается точно также
При x < 6 [x - 6] = 6 - x
Подставляем в квадратное неравенство
При x >= 6 [x - 6] = x - 6
Тоже подставляем в квадратное неравенство