ООО В упражнениях 4.21-4.26 постройте полигон частот и полигон относи- тельных частот в процентах для данных вариационного рода. 4.21. х n 2 1 5 3 7 4 9 2
Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:
В нашем случае получается:
Итак, от мы перешли к . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: , где - это и есть этот период. В нашем случае получается вот так:
Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что мы изменять не можем, так как это переменная, которую нам надо найти. Зато мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять . Нам известно, что , и вся левая часть в него превратится. Получится вот так:
Теперь просто решаем обычное тригонометрическое уравнение и находим .
Итак, вот мы к этому и пришли. Возникает вопрос, что делать с ? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как , то . Положительное число должно быть больше нуля, и очевидно, что при . Поэтому подставляем наше первое значение: . При нём получаем:
Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству .
Согласно формуле приведения, , отсюда имеем:
Равенство не выполнено, значит, не является периодом данной функции. Проверяем дальше, .
1) Імовірність випадення числа меншого від 5 = 4/6=2/3, бо числа 1 2 3 4 задовольняют умову, а всього на кубику 6 чисел.
Імовірність випадення числа більшого за 4 = 2/6=1/3, бо числа 5 6 задовольняють умову, а всього на кубику 6 чисел.
Для отримання результату помножимо ймовірність виконання умови при першому кидку на ймовірність виконання умови при другому кидку: 2/3*1/3=2/9
2)Імовірність виконнная умови 5/6 при першому кидку і 1/6 при другому. Отримуємо 1/6*5/6=5/36
3)Імовірність випадення на кубику при першому киданні числа більшого ніж при другому киданні дорівнює 1/2-1/6=1/3, оскільки 1/6-імовірність випадення дубля. Наприклад, перший раз випало число 1. Імовірність випадення того самого числа при другому киданні дорівнює 1/6 (6 варіантів 1 з яких нас задовольняє).1/2 ми вказуємо, бо при киданні використовується один і той самий кубик, і кількість випадків, які нас задовольняють удвічі менша за тотальну кількість імовірних подій, тобто імовірність симетрична.
Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:
В нашем случае получается:
Итак, от мы перешли к . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: , где - это и есть этот период. В нашем случае получается вот так:
Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что мы изменять не можем, так как это переменная, которую нам надо найти. Зато мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять . Нам известно, что , и вся левая часть в него превратится. Получится вот так:
Теперь просто решаем обычное тригонометрическое уравнение и находим .
Итак, вот мы к этому и пришли. Возникает вопрос, что делать с ? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как , то . Положительное число должно быть больше нуля, и очевидно, что при . Поэтому подставляем наше первое значение: . При нём получаем:
Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству .
Согласно формуле приведения, , отсюда имеем:
Равенство не выполнено, значит, не является периодом данной функции. Проверяем дальше, .
Точно так же подставляем в .
По формуле приведения , поэтому:
А потому и является искомым периодом.
ответ: В)
1) Імовірність випадення числа меншого від 5 = 4/6=2/3, бо числа 1 2 3 4 задовольняют умову, а всього на кубику 6 чисел.
Імовірність випадення числа більшого за 4 = 2/6=1/3, бо числа 5 6 задовольняють умову, а всього на кубику 6 чисел.
Для отримання результату помножимо ймовірність виконання умови при першому кидку на ймовірність виконання умови при другому кидку: 2/3*1/3=2/9
2)Імовірність виконнная умови 5/6 при першому кидку і 1/6 при другому. Отримуємо 1/6*5/6=5/36
3)Імовірність випадення на кубику при першому киданні числа більшого ніж при другому киданні дорівнює 1/2-1/6=1/3, оскільки 1/6-імовірність випадення дубля. Наприклад, перший раз випало число 1. Імовірність випадення того самого числа при другому киданні дорівнює 1/6 (6 варіантів 1 з яких нас задовольняє).1/2 ми вказуємо, бо при киданні використовується один і той самий кубик, і кількість випадків, які нас задовольняють удвічі менша за тотальну кількість імовірних подій, тобто імовірність симетрична.
Отже, відповідь: 1/3