Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
60% пачек на 1 полке
Объяснение:
Пусть на 3 полке x пачек, тогда на 2 полке x+22 пачек.
На 1 полке в 1,5 раза больше, чем на 2 и 3 полках вместе, то есть:
1,5(x + x + 22) = 3/2*(2x + 22) = 3(x + 11) = 3x + 33.
На всех трёх полках всего 215 пачек.
3x + 33 + x + x + 22 = 215
5x + 55 = 215
x + 11 = 43
x = 43 - 11 = 32 пачки на 3 полке.
x + 22 = 32 + 22 = 54 пачки на 2 полке.
1,5(32 + 54) = 3/2*86 = 3*43 = 129 пачек на 1 полке.
129 + 54 + 32 = 215 пачек всего.
На 1 полке находится:
129/215 = 3/5 = 6/10 = 0,6 = 60% пачек.
Только причем здесь психопатия?
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁ y = k₂x + b₂
сократим дроби
1) y=12/16x+8/10 = 3/4x + 4/5
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂ и b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются