Описать свойства функции по графику Область определения считать неограниченной Четность, нечетность Пересечение с осями координат Промежутки возрастания нубывания Точкиэкстремума и экстремумы Точкиперегиба
каждое натуральное число можна записать в виде 6k+1,6k+2, 6k+3, 6k+4, 6k+5, (то же самое что 6l-1), 6k+6, где k=0, или k - натуральное (так как при делении на 6 остатки могут быть 0,1,2,3,4,5)
числа вида 6k+2, 6k+4, 6k+6 четные поэтому делятся на 2, но но одно простое число больше 3 на 2 не делится, поэтому среди чисел этого вида нет простых
числа вида 6k+3=3*(2k+1) делятся на 3, но ни одно число большее 3, на 3 не делится, поэтому среди чисел данного вида нет протых чисел, поэтому простые числа находятся срди чисел вида р=6к+-1, к принадлежит N, что и требовалось доказать
теперь используя доказанный пункт б) докажем а)
р*р-1=(p-1)(p+1) - по формуле разности квадратов
рассмотрим два возможных случая
первый р=6k+1, к принадлежит N
тогда
р*р-1=(6k+1-1)(6k+1+1)=6k*(6k+2)=12k*(3k+1), а значит деится на 12
второй p=6k-1
p*p-1=(6k-1-1)(6k-1+1)=(6k-2)*6к=12к*(3к-1), а значит делится на 12.
пусть а, a+d, a+2d - три числа, образующие арифмитическую прогрессию, тогда
a+8, a+d, a+2d - три числа образующие геометричесскую прогрессию
отсюда и из условия имеем
a+8+a+d+a+2d=26 (условие задачи - сумма членов геометричесской прогрессии равна 26)
3a+3d=18
a+d=6 (*)
d=6-a
(a+d)^2=(a+8)(a+2d) (использовано свойство, если дано три последовательные члены геометрической прогрессии, то квадрат среднего равен произведению первого и третьего члена)
докажем сначала пункт б)
каждое натуральное число можна записать в виде 6k+1,6k+2, 6k+3, 6k+4, 6k+5, (то же самое что 6l-1), 6k+6, где k=0, или k - натуральное (так как при делении на 6 остатки могут быть 0,1,2,3,4,5)
числа вида 6k+2, 6k+4, 6k+6 четные поэтому делятся на 2, но но одно простое число больше 3 на 2 не делится, поэтому среди чисел этого вида нет простых
числа вида 6k+3=3*(2k+1) делятся на 3, но ни одно число большее 3, на 3 не делится, поэтому среди чисел данного вида нет протых чисел, поэтому простые числа находятся срди чисел вида р=6к+-1, к принадлежит N, что и требовалось доказать
теперь используя доказанный пункт б) докажем а)
р*р-1=(p-1)(p+1) - по формуле разности квадратов
рассмотрим два возможных случая
первый р=6k+1, к принадлежит N
тогда
р*р-1=(6k+1-1)(6k+1+1)=6k*(6k+2)=12k*(3k+1), а значит деится на 12
второй p=6k-1
p*p-1=(6k-1-1)(6k-1+1)=(6k-2)*6к=12к*(3к-1), а значит делится на 12.
Доказано
пусть а, a+d, a+2d - три числа, образующие арифмитическую прогрессию, тогда
a+8, a+d, a+2d - три числа образующие геометричесскую прогрессию
отсюда и из условия имеем
a+8+a+d+a+2d=26 (условие задачи - сумма членов геометричесской прогрессии равна 26)
3a+3d=18
a+d=6 (*)
d=6-a
(a+d)^2=(a+8)(a+2d) (использовано свойство, если дано три последовательные члены геометрической прогрессии, то квадрат среднего равен произведению первого и третьего члена)
6^2=(a+8)(12-a) (используем (*) )
36=12a+96-a^2-8a
a^2-4a-60=0
D=256=16^2
a1=(4+16)/2=10
a2=(4-16)=-6
b[1]=a=10
b[2=]a+d=6
q=b[2]/b[1]=6/10=0.6
или
b[1]=a=-6
b[2]=a+d=6
q=b[2]/b[1]=6/(-6)=-1