2. y=0 при х=0 из этого следует что начало координат принадлежит графику функции; y>0 при x>0, а значит график располагается в первой координатной четверти (первом координатном угле)
3. Функция возрастает на луче [0;+∞); Другими словами на этом луче, большему значению аргумента, соответствует большее значение функции.
4. Функция имеет наименьшее значение, и не имеет наибольшего значения. Данное значение достигается тогда, когда х=0;
5. Функция непрерывна.
6. Функция выпукла вверх.
7. Область значений функции y=√x является луч [0;+∞)
Следует отметить, что график функции y=√x симметричен относительно оси симметрии у=х с графиком функции y=x^2, при x>0.
Y = +√x - арифметический корень (синяя ветвь)
Область определения - Dx = Х∈[0;+∞) - не отрицательный.
Область значений - Ey = Y∈[0;+∞) - не отрицательные
Объяснение:
1.Область определения функции явяется луч [0;+∞);
2. y=0 при х=0 из этого следует что начало координат принадлежит графику функции; y>0 при x>0, а значит график располагается в первой координатной четверти (первом координатном угле)
3. Функция возрастает на луче [0;+∞); Другими словами на этом луче, большему значению аргумента, соответствует большее значение функции.
4. Функция имеет наименьшее значение, и не имеет наибольшего значения. Данное значение достигается тогда, когда х=0;
5. Функция непрерывна.
6. Функция выпукла вверх.
7. Область значений функции y=√x является луч [0;+∞)
Следует отметить, что график функции y=√x симметричен относительно оси симметрии у=х с графиком функции y=x^2, при x>0.