Определение вероятности (если можно с решением) 1.Считая выпадение любой грани игральной кости одинаково вероятным, найти вероятность выпадения грани с чётным числом очков.
2.В ящике 4 белых и 7 чёрных шаров. Из ящика одновременно вынимают два шара. Какова вероятность того, что оба шара белые?
3.Известно, что в поступившей партии из 30 швейных машинок 10 машинок имеют внутренний дефект. Определить вероятность того, что из партии в пять наудачу взятых машинок три окажутся бездефектными.
В решении.
Объяснение:
1) Решить систему уравнений:
1/х + 1/у = 3/4
1/х - 1/у = 1/4
Сложить уравнения:
1/х + 1/х + 1/у - 1/у = 3/4 + 1/4
2/х = 1
х = 2;
Подставить значение х в любое из уравнений и вычислить у:
1/2 + 1/у = 3/4
2у + 4 = 3у
2у - 3у = -4
-у = -4
у = 4.
Решение системы уравнений (2; 4).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
2) Решить систему уравнений:
1 + х/(1 - х) =у/(1 - х²)
(х - 5)/(3 - у) = 1/2
Упростить первое уравнение:
(1 - х²) = (1 - х)(1 + х)
Умножить уравнение (все части) на это выражение, чтобы избавиться от дроби:
(1 - х)(1 + х) + х*(1 + х) = у
1 - х² + х + х² = у
1 + х = у;
Упростить второе уравнение:
(х - 5)/(3 - у) = 1/2
Умножить уравнение (все части) на 2(3 - у), чтобы избавиться от дроби:
2*(х - 5) = 3 - у
2х - 10 = 3 - у
2х + у = 13;
Получили упрощенную систему уравнений:
1 + х = у;
2х + у = 13;
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = у - 1
2(у - 1) + у = 13
2у - 2 + у = 13
3у = 15
у = 5;
х = у - 1
х = 4.
Решение системы уравнений (4; 5).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
3) Решить систему уравнений:
5/х + 2/у = 2
10/х - 6/у = -1
Умножить первое уравнение на 3, чтобы решить систему методом сложения:
15/х + 6/у = 6
10/х - 6/у = -1
Сложить уравнения:
15/х + 10/х + 6/у - 6/у = 6 - 1
25/х = 5
5х = 25
х = 5;
Подставить значение х в любое из уравнений и вычислить у:
5/5 + 2/у = 2
1 + 2/у = 2
Умножить уравнение на у, чтобы избавиться от дроби:
у + 2 = 2у
у - 2у = -2
-у = -2
у = 2.
Решение системы уравнений (5; 2).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
4) Решить систему уравнений:
3у/(9 - х²) + х/(х - 3) = 1
(5 - у)/(х - 5) = 2
Упростить первое уравнение:
(9 - х²) = (3 - х)(3 + х);
+ х/(х - 3) = -х(3 - х);
Получили:
3у/(3 - х)(3 + х) - х/(х - 3) = 1
Умножить уравнение (все части) на (3 - х)(3 + х), чтобы избавиться от дроби:
3у - х(3 + х) = (3 - х)(3 + х)
3у - 3х - х² = 9 - х²
Привести подобные члены:
3у - 3х - х² + х² = 9
3у - 3х = 9
Разделить уравнение на 3 для упрощения:
у - х = 3;
Упростить второе уравнение:
(5 - у)/(х - 5) = 2
Умножить уравнение (все части) на (х - 5),чтобы избавиться от дроби:
5 - у = 2(х - 5)
5 - у = 2х -10
Привести подобные члены:
-у - 2х = -15;
Получили упрощённую систему уравнений:
у - х = 3;
-у - 2х = -15;
Сложить уравнения:
у - у - х - 2х = 3 - 15
-3х = -12
х = -12/-3
х = 4;
Подставить значение х в любое из уравнений и вычислить у:
у - х = 3;
у = 3 + 4
у = 7.
Решение системы уравнений (4; 7).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
ответ: Р1 = 80 см, Р2 = 60 см.
Объяснение:
"Сторона одного квадрата меньше стороны другого на 5 см, а площадь меньше на 175 см^(2). Найди периметр каждого квадрата."
а-сторона одного квадрата. (а-5) - сторона второго квадрата.
S1=a² - площадь первого квадрата.
S2=(a-5)² - площадь второго квадрата.
S1-S2=175 см².
a²-(a-5)²=175;
a²-a²+10a-25=175;
10a=200;
a=20 см - сторона первого квадрата.
Р1=4*20=80 см - периметр первого квадрата.
Сторона второго квадрата равна а-5=20-5=15 см.
Р2=4*15=60 см - периметр второго квадрата.