Нюше нужен уникальный набор: ручка + карандаш + тетрадь! И она в нужном месте! Каждый товар в этом магазине уникален!
Это задача на классическое правило умножения: Если объект можно выбрать и если после каждого такого выбора объект можно выбрать то выбор пары в указанном порядке можно осуществить
------------------------------------------------ Нужно последовательно одно за другим осуществить три действия (в любом порядке): выбор КАРАНДАША, выбор РУЧКИ, выбор ТЕТРАДИ.
Пусть сначала выбирается карандаш, потом ручка, потом тетрадь: - первое действие можно осуществить И ПРИ ЛЮБОМ ЕГО ОСУЩЕСТВЛЕНИЯ второе действие можно осуществить и в конце ПРИ ЛЮБОМ ОСУЩЕСТВЛЕНИЯ ПЕРВЫХ ДВУХ ДЕЙСТВИЙ третье действие можно осуществить
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно
И она в нужном месте! Каждый товар в этом магазине уникален!
Это задача на классическое правило умножения:
Если объект можно выбрать и если после каждого такого выбора объект можно выбрать то выбор пары в указанном порядке можно осуществить
------------------------------------------------
Нужно последовательно одно за другим осуществить три действия (в любом порядке): выбор КАРАНДАША, выбор РУЧКИ, выбор ТЕТРАДИ.
Пусть сначала выбирается карандаш, потом ручка, потом тетрадь:
- первое действие можно осуществить И ПРИ ЛЮБОМ ЕГО ОСУЩЕСТВЛЕНИЯ второе действие можно осуществить и в конце ПРИ ЛЮБОМ ОСУЩЕСТВЛЕНИЯ ПЕРВЫХ ДВУХ ДЕЙСТВИЙ третье действие можно осуществить
Тогда эти три действия можно осуществить
ответ: