В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
shakenovdarhan
shakenovdarhan
08.05.2023 19:38 •  Алгебра

Определи истинность высказывания. В первый столбик "Всегда" расположи высказывания, которые верны всегда. Во второй столбик "Иногда" высказывания, которые верны иногда. В третий столбик "Никогда" высказывания, которые всегда (никогда) неверны.​


Определи истинность высказывания. В первый столбик Всегда расположи высказывания, которые верны вс

Показать ответ
Ответ:
HICKOinc
HICKOinc
22.03.2022 16:49
Нет, не могли. 
Среди чисел от 1 до 72 имеется ровно 72/9=8 чисел  кратных 9.
Среди чисел от 1 до 72 имеется ровно 72/3-72/9=16 кратных 3, но не кратных 9.
Найдем максимально возможное количество столбцов, в которых произведения их элементов будут кратны 9.
Максимальное количество таких столбцов может получиться, когда все числа кратные 9 находятся в разных столбцах, а числа кратные только 3 (но не кратные 9) находятся по два в каждом столбце. Итак, максимальное количество столбцов, в которых произведения четверок кратны 9 равно 16/2+8=16. По признаку делимости на 9 сумма цифр произведений элементов таких столбцов тоже кратна 9. Значит среди полученных сумм цифр не более 16 штук кратны 9, и кратные 9 среди них обязательно будут. Значит суммы цифр для всех столбцов не могут быть равными, т.к. иначе суммы цифр всех 18 произведений были бы кратны 9, а мы только что вывели, что их не более 16 штук. Противоречие.
0,0(0 оценок)
Ответ:
389648
389648
22.03.2022 16:49
Нет, не могли. 
Среди чисел от 1 до 72 имеется ровно 72/9=8 чисел  кратных 9.
Среди чисел от 1 до 72 имеется ровно 72/3-72/9=16 кратных 3, но не кратных 9.
Найдем максимально возможное количество столбцов, в которых произведения их элементов будут кратны 9.
Максимальное количество таких столбцов может получиться, когда все числа кратные 9 находятся в разных столбцах, а числа кратные только 3 (но не кратные 9) находятся по два в каждом столбце. Итак, максимальное количество столбцов, в которых произведения четверок кратны 9 равно 16/2+8=16. По признаку делимости на 9 сумма цифр произведений элементов таких столбцов тоже кратна 9. Значит среди полученных сумм цифр не более 16 штук кратны 9, и кратные 9 среди них обязательно будут. Значит суммы цифр для всех столбцов не могут быть равными, т.к. иначе суммы цифр всех 18 произведений были бы кратны 9, а мы только что вывели, что их не более 16 штук. Противоречие.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота