Пусть СЕ =х , тогда ВЕ= 32-х, АД= 16-х ВД= 24-(16-х) = 8+х. Треугольники ВДЕ и АВС подобны по двум углам ( угол в -общий , угол ВЕД= углу С как соответственные при параллельных ДЕ И АС и секущей ВС) Значит ВД/ ВА = ВЕ/ВС тоесть (8+х) : 24= (32-х) :4 , решаем эту пропорцию (8+х)* 32= (32-х)* 24
( 8+х)* 4= (32-х)* 3
32 +4х= 96 -3х
7х=64
х= 9 целых 1/7
ВД= 8+9 целых 1/7= 17 целых 1/7
Также пропорциональны стороны ВД : АВ= ДЕ : АС подстави данные 17 целых 1/7 : 24= ДЕ : 28, ДЕ = 17 целых 1/7 * 28 :24 = 20 см
Дано: n и m - натуральные n≠1 и m≠1 Доказать: n³+m³ - составное число Доказательство: Составное число - число полученное путём произведения двух натуральных чисел, больших единицы. n³+m³=(n+m)(n²-nm+m²) По условию, n и m - натуральные числа, не равные единице, следовательно, их сумма является натуральным числом не равным единице. Посмотрим на вторую скобку: n²+m² - натуральное число, nm - натуральное число, причём n²+m² > mn, т.е. n²+m²-nm - также натуральное число больше единицы. Получаем, что n³+m³ - является произведением двух натуральных чисел, больших единицы. Следовательно, n³+m³ - составное число. Что и требовалось доказать.
Пусть СЕ =х , тогда ВЕ= 32-х, АД= 16-х ВД= 24-(16-х) = 8+х. Треугольники ВДЕ и АВС подобны по двум углам ( угол в -общий , угол ВЕД= углу С как соответственные при параллельных ДЕ И АС и секущей ВС) Значит ВД/ ВА = ВЕ/ВС тоесть (8+х) : 24= (32-х) :4 , решаем эту пропорцию (8+х)* 32= (32-х)* 24
( 8+х)* 4= (32-х)* 3
32 +4х= 96 -3х
7х=64
х= 9 целых 1/7
ВД= 8+9 целых 1/7= 17 целых 1/7
Также пропорциональны стороны ВД : АВ= ДЕ : АС подстави данные 17 целых 1/7 : 24= ДЕ : 28, ДЕ = 17 целых 1/7 * 28 :24 = 20 см
ответ 20см
n≠1 и m≠1
Доказать: n³+m³ - составное число
Доказательство:
Составное число - число полученное путём произведения двух натуральных чисел, больших единицы.
n³+m³=(n+m)(n²-nm+m²)
По условию, n и m - натуральные числа, не равные единице, следовательно, их сумма является натуральным числом не равным единице.
Посмотрим на вторую скобку: n²+m² - натуральное число, nm - натуральное число, причём n²+m² > mn, т.е. n²+m²-nm - также натуральное число больше единицы.
Получаем, что n³+m³ - является произведением двух натуральных чисел, больших единицы.
Следовательно, n³+m³ - составное число.
Что и требовалось доказать.