(-∞; (15 - √253) / 14) ∪ ((15 + √253) / 14; +∞)
Объяснение:
(3 - х)(7х + 1) < 5х + 2
21х + 3 - 7х² - х < 5x + 2
-7x² + 20x + 3 < 5x + 2
-7x² + 20x - 5x + 3 - 2 < 0
-7x² + 15x + 1 = 0
D = 15² - 4 * (-7) = 225 + 28 = 253
√D = √253
x₁ = (-15 - √253) / (-7 * 2) = -(15 + √253) / (-14) = (15 + √253)/14 (примерно 2,207)
x₂ = (-15 + √253) / (-7 * 2) = -(15 - √253) / (-14) = (15 - √253) / 14 (примерно -0,06)
начертим координатную прямую (см. рис)
подставим -1 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - (-1)) * (7 * (-1) + 1) - 5 * (-1) - 2 =
= 4 * (-7 + 1) + 5 - 2 =
= -6 * 4 + 5 - 2 =
= -24 + 5 - 2 = -21
впишем в промежутке от -∞ до (15 - √253) / 14 знак "-"
подставим 0 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - 0) * (7 * 0 + 1) - 5 * 0 - 2 = 3 * 1 - 2 = 1
впишем в промежутке от (15 - √253) / 14 до (15 + √253)/14 знак "+"
подставим 3 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - 3) * (7 * 3 + 1) - 5 * 3 - 2 = 0 - 15 - 2 = -17
впишем в промежутке от (15 + √253) / 14 до +∞ знак "-"
Неравенство принимает отрицательное значение в промежутках:
а₁, а₂, а₃, где а₂ =а₁ + д; или а₁ = а₂ - д;(1) а₃ = а₂ + д;(2)
по условию: а₁+ а₂ + а₃ = 30 (3), но сумма трех членов равна также: (а₁ + а₃)·3:2 = 30, ⇒ а₁ + а₃ = 20 (4). Сравнивая (3) и (4) (или вычитая из (3) (4)), получим: а₂ =10;
2. По условию: (а₁ - 5); (а₂ - 4); а₃ - геометрическая прогрессия.
Исходя из ее свойств (а₂ - 4)/(а₁ - 5) = а₃/(а₂ - 4) или, т.к. а₂ =10 и ⇒ а₂ - 4 = 6; 6/(а₁ - 5) = а₃/6 (5).
Преобразуем (5) и выразим а₁ и а₃ через а₂: пригодятся выражения (1) и (2).
а₃·(а₁ - 5) = 36 ; (а₂+д)·(а₂ -д -5) =36, Вставив а₂ = 10, получим: (10+д)·(10 - д - 5) =36; (10+д)·(5 - д) = 36;
50 + 5д -10д - д² = 36; д² + 5д - 14 = 0;
д₁ = (-5 + √(25+56):2 = (-5+9):2 = 2
(т.к. по условию прогрессия возрастающая, отрицательный д₂ на берем)
тогда а₁ = а₂ - д = 10 - 2 = 8; а₃ = а₂ +д =10 + 2 = 12;
Прогрессия наша: 8, 10, 12
Проверка: (а₂-4)/(а₁-5) = 12/(а₂-4) = 6:3=12:6, и новая прогрессия (3,6,12) геометрическая.
(-∞; (15 - √253) / 14) ∪ ((15 + √253) / 14; +∞)
Объяснение:
(3 - х)(7х + 1) < 5х + 2
21х + 3 - 7х² - х < 5x + 2
-7x² + 20x + 3 < 5x + 2
-7x² + 20x - 5x + 3 - 2 < 0
-7x² + 15x + 1 = 0
D = 15² - 4 * (-7) = 225 + 28 = 253
√D = √253
x₁ = (-15 - √253) / (-7 * 2) = -(15 + √253) / (-14) = (15 + √253)/14 (примерно 2,207)
x₂ = (-15 + √253) / (-7 * 2) = -(15 - √253) / (-14) = (15 - √253) / 14 (примерно -0,06)
начертим координатную прямую (см. рис)
подставим -1 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - (-1)) * (7 * (-1) + 1) - 5 * (-1) - 2 =
= 4 * (-7 + 1) + 5 - 2 =
= -6 * 4 + 5 - 2 =
= -24 + 5 - 2 = -21
впишем в промежутке от -∞ до (15 - √253) / 14 знак "-"
подставим 0 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - 0) * (7 * 0 + 1) - 5 * 0 - 2 = 3 * 1 - 2 = 1
впишем в промежутке от (15 - √253) / 14 до (15 + √253)/14 знак "+"
подставим 3 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - 3) * (7 * 3 + 1) - 5 * 3 - 2 = 0 - 15 - 2 = -17
впишем в промежутке от (15 + √253) / 14 до +∞ знак "-"
Неравенство принимает отрицательное значение в промежутках:
(-∞; (15 - √253) / 14) ∪ ((15 + √253) / 14; +∞)