Строишь график функции y = 3x² и сдвигаешь его на 2,5 единичных отрезка влево. (Ты вообще можешь сразу провести пунктиром линию x = 2,5 (это вертикальная линия, которая пересекается с осью Оx в точке 2,5) и строить свой график, как будто твой пунктир - это ось Оy). График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12). Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
Я знаю только до 100Делим 100 на 2 - получаем 50. То есть 50 чисел которые не делятся на два. Найдем сколько чисел из 50 делятся на 3, то есть разделим 50 на 3. Получается 16,6, то есть примерно 17. Значит 17 чисел из 50 делятся на три, остальные - нет. 50 минус 17 будет 33.
Также можно просто проверить перебором. Сразу запишем все нечетные числа от 1 до 100 так как они не делятся на 2. 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 Из них уберем те, что делятся на 3. 1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77 79 83 85 89 91 95 97 И теперь просто посчитаем что осталось. Получим 33.
График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12).
Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
Найдем сколько чисел из 50 делятся на 3, то есть разделим 50 на 3. Получается 16,6, то есть примерно 17. Значит 17 чисел из 50 делятся на три, остальные - нет. 50 минус 17 будет 33.
Также можно просто проверить перебором. Сразу запишем все нечетные числа от 1 до 100 так как они не делятся на 2.
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
Из них уберем те, что делятся на 3.
1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77 79 83 85 89 91 95 97
И теперь просто посчитаем что осталось. Получим 33.