Определи наименьший номер, начиная с которого все члены последовательности (xn) будут не меньше заданного числа A :
xn=5n2−29 , A=−4 .
ответ:
1. выбери соотношение, необходимое при решении задачи:
xn=5n2−29 , A=−4 .
5n2−29≥−4
5n2−29≤−4
5n2−29>−4
2. Наименьший номер (запиши число): n= .
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
По теореме Пифагора:
Составим и решим систему уравнений
Из второго уравнения имеем, что . Тогда имеем несколько случаев.
Случай 1. Если , то и подставим в первое уравнение.
Согласно теореме виета см и корень не удовлетворяет заданному условию
см
Случай 2. Если ,то подставив в первое уравнение, получим
Согласно теореме Виета см и корень не удовлетворяет условию
Катеты прямоугольного треугольника равны 35 см и 12 см или 12 см и 35 см.
Периметр прямоугольного треугольника: см
ответ: 84 см.