В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
saskey
saskey
04.04.2023 18:12 •  Алгебра

Определи, при каких значениях переменной не имеет смысла алгебраическая дробь 2−17+1(2+11)(2−11).

Дробь не имеет смысла при , равном или
(первым введи меньшее число).
ответить!

Показать ответ
Ответ:
Покемон123456789
Покемон123456789
09.09.2020 08:46

Условие. Y²+xy-4x-9y+20=0 ;   y=ax+1 ;   x>2

найти все значения а, при которых графики имеют одну общую точку(в нашем случае (ax+1)² + x(ax+1) -4x - 9(ax+1)+20=0 имеет единственное решение).

Подставим у = (ax+1)² в уравнение у²+xy-4x-9y+20=0, получим

(ax+1)^2+x(ax+1)-4x-9(ax+1)+20=0\\ a^2x^2+2ax+1+ax^2+x-4x-9ax-9+20=0\\ x^2(a^2+1)-(3+7a)x+12=0

Найдем дискриминант квадратного уравнения относительно x

D=(3+7a)^2-4(a^2+1)\cdot12=9+42a+49a^2-48a^2-48=\\ =a^2+42a-39=0

Получим a_{1,2}=-21\pm4\sqrt{30}


Если подставить a=-21+4\sqrt{30}, т.е. имеется квадратное уравнение (922-168\sqrt{30})x^2+(144-28\sqrt{30})x+12=0, у которого корень

                                                 \bigg(x-\dfrac{36+7\sqrt{30}}{29}\bigg)^2=0\\ \\ x=\dfrac{36+7\sqrt{30}}{29}2

Если подставить a=-21-4\sqrt{30}, т.е. имеется квадратное уравнение (922+168\sqrt{30})x^2+(144+28\sqrt{30})x+12=0, у которого корень

                                                 \bigg(x-\dfrac{36-7\sqrt{30}}{29}\bigg)^2=0\\ \\ x=\dfrac{36-7\sqrt{30}}{29}


ответ: a=-21+4\sqrt{30}

0,0(0 оценок)
Ответ:
sagizovtoshtemi
sagizovtoshtemi
03.10.2020 05:16

Объяснение:

1) проверим для n=3

2³=8 ; 2*3+1=7 ; 2³>2*3+1 верно (1)

2) предположим что неравенство верно при n=k (k>3) (2)

3) при n=k+1 проверим выполнение неравенства

2^(k+1)=2*2^k

2(k+1)+1=2k+3

по предположению (2)  2^k>2k+1

умножим обе части на 2

2*2^k>2(2k+1)=4k+2

2*2^k>4k+2

сравним 4k+2 и 2k+3  для этого определим знак их разности

4k+2 - (2k+3)=4k+2-2k-3=2k-3 так как k>3 то 2k>2*3=6

2k>6 и тем более 2k>3 ⇒ 2k-3>0 ⇒ 4k+2 - (2k+3)>0 ⇒ 4k+2 > (2k+3)  

так как 2^(k+1)>4+2k  и 4+2k>2k+3 и 2k+3=2(k+1)+1

то   2^(k+1)> 2(k+1)+1  то есть неравенство выполняется для n=k+1    (3)

из (1); (2); (3) ⇒ неравенство верно для любого n>3

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота