1)область значений функции: у≥0; 2)х=(-∞;+∞); 3)корни :x²+4x-5=0; x₁,₂=-2⁺₋√4+5=-2⁺₋3; x₁=-2+3=1; x₂=-2-3=-5; 4)если бы не было модуля,то это график параболы, вершина этой имеет координаты: m=-b/2a=-4/2=-2;n=-D/4a=-(4²+4·5)/4=-9; 5)имеется модуль,поэтому строится график параболы,затем,вся часть графика,которая размещена ниже оси Ох ,строится симметрично осиОх. График будет иметь вид: при х=(-∞;-5)-функция убывает; при х=(-5;-2)-функция возрастает; при х=(-2;1)-функция убывает; при х=(1;+∞)-функция возрастает.
Назрин8, в вашем условии неточность. В том виде, в котором уравнение представлено сейчас, это тождество не только не доказывается, но и вообще в левой и правой части уравнения стоят стоят разные вещи (возьмите для интереса и сравните их в том же маткаде).
Могу предположить, что вы забыли дописать "х" во второй скобке и будет там (3х + 4x^2), и множитель 2 за скобками всё же в первой степени, а не второй. Тогда левая часть легко сворачивается как разность квадратов:
2)х=(-∞;+∞);
3)корни :x²+4x-5=0;
x₁,₂=-2⁺₋√4+5=-2⁺₋3;
x₁=-2+3=1; x₂=-2-3=-5;
4)если бы не было модуля,то это график параболы,
вершина этой имеет координаты:
m=-b/2a=-4/2=-2;n=-D/4a=-(4²+4·5)/4=-9;
5)имеется модуль,поэтому строится график параболы,затем,вся часть графика,которая размещена ниже оси Ох ,строится симметрично осиОх.
График будет иметь вид:
при х=(-∞;-5)-функция убывает;
при х=(-5;-2)-функция возрастает;
при х=(-2;1)-функция убывает;
при х=(1;+∞)-функция возрастает.
Могу предположить, что вы забыли дописать "х" во второй скобке и будет там (3х + 4x^2), и множитель 2 за скобками всё же в первой степени, а не второй. Тогда левая часть легко сворачивается как разность квадратов:
2* (4х^2 - 3x) * (3х + 4х^2) = 2 * (16x^4 - 9x^2) = 32x^4 - 18x^2
Теперь похоже на правду. Однако при такой версии (32x^4) в правой части уравнение в условии должно быть без минуса.
Вообщем, проверьте условия ещё раз, и переоформите вопрос, так как не всегда интересно угадывать условия посредством подбора)