Графики уравнений пересекаются в том случае, если существуют пары чисел, удовлетворяющие, в качестве решения, обоим уравнениям. Если общих решений системы уравнений нет, то такие графики не пересекаются.
a). { -3y + x + 5 = 0
{ 7 - 5y = -2x
Выразим в первом уравнении х через у и подставим во второе:
{ x = 3y - 5
{ 7 - 5y = -2(3y - 5)
7 - 5y + 6y - 10 = 0
y = 3 x = 3·3 - 5 = 4
Таким образом существует пара чисел (4; 3), которая является решением каждого уравнения. На координатной плоскости этой паре соответствует точка с координатами х = 4, у = 3.
Полученная точка и является точкой пересечения графиков данных уравнений.
б). { x + 5 = 3y
{ x - 3y = -5
Так как из первого уравнения путем переноса получается второе, то эти уравнения идентичны. Следовательно, графики данных уравнений совпадают и существует бесконечное множество точек, являющееся решением данной системы.
ОДЗ: (x+1)/(x-3) ≥0 ⇔ {(x+1)(x-3) ≥0 ; x ≠3 , т.е. x∈(-∞; -1] ∪ (3 ;∞) .
В ОДЗ данное уравнение ⇔ (x-3)(x+1)±3 √(x+1)(x - 3) = (a+2)(a-1).
( знак " -" , если x <3 и знак "+" если x >3 ) ;
заменим √(x+1)(x - 3) =√(x² -2x - 3)= t ≥ 0 получится квадратное уравнение t² ±3t - (a+2)(a-1) =0 с дискриминантом
D =(±3)² +4(a+2)(a-1) = 4a+4a+1 =( 2a +1)² ≥ 0.
рассмотрим два варианта :
a) x∈ (- ∞ ; 1] .
t² - 3t -(a+2)(a-1) =0 ;
t₁ = (3-2a-1) /2 = -(a -1) ;
t₂ = (3+2a+1) /2 = a+2 .
* * * можно было и догадаться [t = -(a-1) ; t = (a+2) . Виет * * *
[√(x² -2x -3) = -(a -1) ; √(x² -2x -3) = a+2 .
---
a₁) a ≤ 1 * * * -(a -1) ≥ 0 * * *
√(x² -2x -3) = -(a -1)
x² -2x -3 = (- (a -1)) ² .
x² -2x - 3 -(a -1)² = 0 . D₁/4 =1 +3 +(a -1)² = 4 +(a -1)² ≥ 2²
x₁=1+√(4 +(a -1)²) ≥ 3 ∉ (-∞; 1].
x₂=1 - √(4 +(a -1)²) ≤ 1. в частности если a=1 ⇒ x =1.
a₂) a ≥ -2 * * * a+2 ≥ 0 * * *
x² -2x -3 = (a+2)² ;
x² -2x -3 - (a+2)² =0 D₂/4 =1 +3 +(a +2)² =4+(a+2)² ≥ 2².
x₁' =1+√(4+(a+2)² ) >1 ∉ (-∞; 1].
x₂'=1 - √(4+(a+2)² ) ≤ 1. в частности , если a= -2 ⇒ x =1. .
b) x > 3
t² +3t -(a+2)(a-1) =0 * * *
t₃ =(-3-2a -1)/2 = -( a +2) ;
t₄ =(-3+2a +1)/2 = (a -1).
* * * t₃=t₂ и t₄ = - t₁ не случайно * * *
b₁) √(x² -2x - 3 ) = -(a+2)
a+2 < 0 * * * (если a = -2 ⇒ [x =1 ; x =3 ∉ ОДЗ (3 ;∞) * * *
x² -2x - 3 = (a+2)² ;
x² -2x -3 -(a +2)² =0 ; D/4 =1+3+(a +2)²= 4 +(a+2)² ≥ 2² .
x₃ =1+ √(4 +(a+2)² ) , если a < - 2.
x₄ =1 - √(2+a ) .∉ (3 ;∞)
b₂) √(x² -2x - 3) = a -1 ;
a >1 (если a =1⇒[ x = -1 ; x =3 ∉ (3 ;∞)
x² -2x - 3 = (a -1)² ;
x² -2x - 3 - (a -1)² =0 ; D/4 = 1 +3+ (a -1)² = 4 +(a -1)² > 2²
x₃' =1+ √(4 +(a-1)² ) , если a > 1
x₄' =1 - √((4 +(a-1)² ) .∉ (3 ;∞)
ответ : 1+ √(4 +(a+2)² ) , если a < - 2;
1 - √(4 +(a+2)² ) , если a ≥ -2 ;
1 - √(4 +(a -1)²) , если а ≤ 1 ; .
1+ √(4 +(a -1)² ) , если a > 1
Графики уравнений пересекаются в том случае, если существуют пары чисел, удовлетворяющие, в качестве решения, обоим уравнениям. Если общих решений системы уравнений нет, то такие графики не пересекаются.
a). { -3y + x + 5 = 0
{ 7 - 5y = -2x
Выразим в первом уравнении х через у и подставим во второе:
{ x = 3y - 5
{ 7 - 5y = -2(3y - 5)
7 - 5y + 6y - 10 = 0
y = 3 x = 3·3 - 5 = 4
Таким образом существует пара чисел (4; 3), которая является решением каждого уравнения. На координатной плоскости этой паре соответствует точка с координатами х = 4, у = 3.
Полученная точка и является точкой пересечения графиков данных уравнений.
б). { x + 5 = 3y
{ x - 3y = -5
Так как из первого уравнения путем переноса получается второе, то эти уравнения идентичны. Следовательно, графики данных уравнений совпадают и существует бесконечное множество точек, являющееся решением данной системы.