Пусть пешеход двигался со скоростью Х километров в час. Тогда скорость велосипедиста была Х+11 км/ч. За полчаса форы, которая была у пешехода, он успел пройти 0,5*Х км. Дальше до момента встречи велосипедист и пешеход двигались равное количество времени - положим, У часов. За это время велосипедист проехал (Х+11)*У км, а пешеход Х*У км. При этом общий путь пешехода составил 5 км, а путь велосипедиста - 13-5=8 км. Получаем систему из двух уравнений.
Отрицательный корень противоречит смыслу задачи - отбрасываем. Следовательно, пешеход двигался со скоростью 5 км/ч, а велосипедист - 5+11=16 км/ч. Проверка. За первые полчаса пешеход км. Далее ему осталось пройти до точки встречи еще 2.5 км - и он их тоже за полчаса. В то же время за эти вторые полчаса велосипедист проехал 16/2=8 км - ровно то расстояние, что отделяло его от точки встречи. ответ: Велосипедист двигался со скоростью 16 км/ч.
Пусть х см - ширина прямоугольника. Тогда, (х+4) см - длина прямоугольника. Составим уравнение:
Раскроем скобки и перенесем все в левую часть:
Решать уравнение будем по формуле корней для уравнения с четным вторым коэффициентом:
Поскольку сторона не может выражаться отрицательным числом, то первый корень не удовлетворяет условию задачи. Тогда:
- ширина прямоугольника
- длина прямоугольника
Составим выражения для периметра:
Находим периметр:
ответ: стороны прямоугольника 6 см и 10 см; периметр прямоугольника 32 см
Отрицательный корень противоречит смыслу задачи - отбрасываем. Следовательно, пешеход двигался со скоростью 5 км/ч, а велосипедист - 5+11=16 км/ч.
Проверка. За первые полчаса пешеход км. Далее ему осталось пройти до точки встречи еще 2.5 км - и он их тоже за полчаса. В то же время за эти вторые полчаса велосипедист проехал 16/2=8 км - ровно то расстояние, что отделяло его от точки встречи.
ответ: Велосипедист двигался со скоростью 16 км/ч.