ответ:Определим моменты времени, когда мяч находился на высоте ровно четыре метра. Для этого решим уравнение :
h(t)=-1,1+20t-10t^2
-1,1+20t-10t^2≥ 4
10t^2 - 20t + 4 + 1,1 ≤ 0
10t^2 - 20t + 5,1 ≤ 0
D = 20^2 - 4 *10*5.1 = 400 - 204 =196 =16
t1 = (20+16)/2*10 = 1,8
t2 = (20-16)/2*10 = 0,2
поскольку по условию задачи мяч брошен снизу вверх, это означает, что в момент времени (с) мяч находился на высоте 4 метра, двигаясь снизу вверх, а в момент времени (с) мяч находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее 4 метров 1,8 − 0,2 = 1,6 секунды.
Из разных решения этого уравнения выберем такое. Заменим сумму косинусов по формуле "удвоенное произведение косинуса полусуммы на косинус полуразности":
2cos^2 x+2cos 4x·cos 2x=0;
Теперь заменим первое слагаемое по формуле понижения степени у косинуса на 1 плюс косинус двойного угла, а cos 4x по формуле косинус двойного угла:
1+cos 2x+2(2cos^2 2x-1)·cos 2x=0;
cos 2x=t;
1+t+4t^3-2t=0;
4t^3-t+1=0; умножим уравнение на 2 и сделаем замену 2t=q:
q^3-q+2=0.
Поскольку рациональные корни не угадываются, можно попробовать решить с формул Кардано. Чтобы узнать, что из этого получается, смотри дальнейшие выкладки. Мне кажется, они говорят о том, что в условие вкралась ошибка
q=p+(1/(3p)); тогда q^3=p^3+(1/(27p^3)) +3p^2(1/(3p))+3p(1/(9p^2); подставив в уравнение, получаем
p^3+(1/(27p^3))+2=0; домножаем на 27p^3 и заменяем p^3 на r:
27r^2+54r+1=0; для упрощения вычислений еще одна замена (перед ней умножаем уравнение на 3) 9r=z; z^2+18z+3=0; z=- 9+-√78; r=-1+-√78/9; p=∛(-1+-√78/9); q= ∛(-1+-√78/9)+1/(3∛(-1+-√78/9)); cos 2x = t= (∛(-1+-√78/9)+1/(3∛(-1+-√78/9)) /2
До ответа доводить не хочется, лучше если сначала автор задачи перепроверит условие. По любому мои скромные попытки кому-то могут показаться любопытными.
ответ:Определим моменты времени, когда мяч находился на высоте ровно четыре метра. Для этого решим уравнение :
h(t)=-1,1+20t-10t^2
-1,1+20t-10t^2≥ 4
10t^2 - 20t + 4 + 1,1 ≤ 0
10t^2 - 20t + 5,1 ≤ 0
D = 20^2 - 4 *10*5.1 = 400 - 204 =196 =16
t1 = (20+16)/2*10 = 1,8
t2 = (20-16)/2*10 = 0,2
поскольку по условию задачи мяч брошен снизу вверх, это означает, что в момент времени (с) мяч находился на высоте 4 метра, двигаясь снизу вверх, а в момент времени (с) мяч находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее 4 метров 1,8 − 0,2 = 1,6 секунды.
Объяснение:
Заменим сумму косинусов по формуле "удвоенное произведение косинуса полусуммы на косинус полуразности":
2cos^2 x+2cos 4x·cos 2x=0;
Теперь заменим первое слагаемое по формуле понижения степени у косинуса на 1 плюс косинус двойного угла, а cos 4x по формуле косинус двойного угла:
1+cos 2x+2(2cos^2 2x-1)·cos 2x=0;
cos 2x=t;
1+t+4t^3-2t=0;
4t^3-t+1=0; умножим уравнение на 2 и сделаем замену 2t=q:
q^3-q+2=0.
Поскольку рациональные корни не угадываются, можно попробовать решить с формул Кардано. Чтобы узнать, что из этого получается, смотри дальнейшие выкладки. Мне кажется, они говорят о том, что в условие вкралась ошибка
q=p+(1/(3p)); тогда q^3=p^3+(1/(27p^3)) +3p^2(1/(3p))+3p(1/(9p^2); подставив в уравнение, получаем
p^3+(1/(27p^3))+2=0; домножаем на 27p^3 и заменяем p^3 на r:
27r^2+54r+1=0; для упрощения вычислений еще одна замена (перед ней умножаем уравнение на 3) 9r=z;
z^2+18z+3=0; z=- 9+-√78; r=-1+-√78/9;
p=∛(-1+-√78/9);
q= ∛(-1+-√78/9)+1/(3∛(-1+-√78/9));
cos 2x = t= (∛(-1+-√78/9)+1/(3∛(-1+-√78/9)) /2
До ответа доводить не хочется, лучше если сначала автор задачи перепроверит условие. По любому мои скромные попытки кому-то могут показаться любопытными.