В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
lana770
lana770
06.08.2021 00:47 •  Алгебра

Определить область определения,множество значений,нули функции,промежутки знакопостоянства

Показать ответ
Ответ:
F(x)=1/2*x^4-8x²=1/2(x^4-16x²+16)-8=1/2(x²-4)-8
D(y)∈(-∞;∞)
E(y)∈[-8;∞)
x=0⇒y=0
y=0⇒1/2x^4-8x²=1/2x²(x²-16)=1/2x²(x-4)(x+4)=0⇒x={0;4;-4}
f`(x)=2x³-16x=2x(x²-8)=0
x=0 x=2√2  x=-2√2
       _          +            _          +

           -2√2        0            2√2
0,0(0 оценок)
Ответ:
GoodArtur
GoodArtur
08.07.2020 23:50
f(x) = \frac{1}{2}x^4 - 8x^2

1) Функция определена при любом значении независимой переменной:

x \in \mathbb{R}

2) Найдём нули функции:

f(x) = \frac{1}{2}x^2(x^2 - 16) = \frac{1}{2}x^2(x - 4)(x + 4)

Функция имеет три корня:

x_1 = 0, x_2 = 4, x_3 = -4

3) Определим промежутки знакопостоянства:

f'(x) = \frac{4}{2}x^3 - 8*2x = 2x^3 - 18x =\\\\ = 2x(x^2 - 8) = 2x(x - 2\sqrt{2})(x + 2\sqrt{2})\\\\&#10;? \ ? \ ? \ [-2\sqrt{2}] \ ? \ ? \ ? \ [0] \ ? \ ? \ ? \ [2\sqrt{2}] \ ? \ ? \ ?\\\\&#10;f'(1) = 2*1(1 - 8) = -14 < 0\\\\&#10;--- [-2\sqrt{2}] +++ [0] --- [2\sqrt{2}] +++

Функция возрастает, когда

&#10;x \in (-2\sqrt{2}; 0) \ \cup \ (2\sqrt{2}; +\infty)

Функция убывает, когда

x \in (-\infty; -2\sqrt{2}) \ \cup \ (0; 2\sqrt{2})

4) Найдём область значений функции. Проверим точки экстремума функции и значения при стремлении аргумента к плюс и минус бесконечности. Т.к. функция чётная, f(x) = f(-x):

&#10;f(2\sqrt{2}) = f(-2\sqrt{2}) = \frac{1}{2}(2\sqrt{2})^4 - 8*(2\sqrt{2})^2 = \frac{64}{2} - 8*8 = 32 - 64 = -32\\\\ f(0) = 0\\\\ \lim\limits_{x \to +\infty}f(x) =\lim\limits_{x \to -\infty}f(x) = +\infty

Тогда:

f(x) \in [-32; +\infty)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота