Определить теоретическую энергетическую ценность творога жирного (200 г), если в 100 г в нём содержится (в %): белки - 14,0, углеводы - 1,3, жиры - 18,0.
По условию необходимо найти числа, кратные 5. Значит, последней цифрой искомых чисел может быть 0 или 5.
1. В первом случае, когда число заканчивается цифрой 0, остальные 4 цифры можно выбирать из множества девяти цифр {1,2,3,...8,9}.
В решении используем размещения, так как порядок элементов важен, ведь поменяв местами цифры, числа изменятся.
Размещением из n элементов по m элементов (m≤n) называется упорядоченная выборка элементов m из данного множества элементов n.
Размещения вычисляются по формуле Amn=n!(n−m)!
По формуле получим число вариантов A49=9!(9−4)!=3024
2. Если число oканчивается цифрой 5, то в качестве первой цифры можно взять любую из восьми цифр 1,2,3,4,6,7,8,9 — нельзя использовать 0, т.к. число должно быть 5-значным.
Цифры со второй по 4 можно выбрать A38=8!(8−3)!=336 различными Следовательно, по правилу произведения имеется 8⋅A38 чисел, оканчивающихся цифрой 5.
По правилу суммы находим, сколько существует чисел, удовлетворяющих условию задачи A49+8⋅A38=3024+8⋅336=5712
Чтобы 1 и 2 тома стояли рядом, надо их связать вместе и считать за одну книгу. Получиться, что нам надо расставить всеми возможными 4-ре книги. То есть надо подсчитать количество перестановок из 4 элементов.Это будет Но между собой 1-ый и 2-ой тома можно переставлять то есть будет два варианта расстановки 1 и 2 томов: сначала 1-ый том, потом 2-ой и наоборот, сначала 2-ой том, затем 1-ый.) По правилу произведения получаем, что расстановки 5 томов сборника сочинений А.С.Пушкина будет 4!*2!=24*2=48 .
По условию необходимо найти числа, кратные 5. Значит, последней цифрой искомых чисел может быть 0 или 5.
1. В первом случае, когда число заканчивается цифрой 0, остальные 4 цифры можно выбирать из множества девяти цифр {1,2,3,...8,9}.
В решении используем размещения, так как порядок элементов важен, ведь поменяв местами цифры, числа изменятся.
Размещением из n элементов по m элементов (m≤n) называется упорядоченная выборка элементов m из данного множества элементов n.
Размещения вычисляются по формуле Amn=n!(n−m)!
По формуле получим число вариантов A49=9!(9−4)!=3024
2. Если число oканчивается цифрой 5, то в качестве первой цифры можно взять любую из восьми цифр 1,2,3,4,6,7,8,9 — нельзя использовать 0, т.к. число должно быть 5-значным.
Цифры со второй по 4 можно выбрать A38=8!(8−3)!=336 различными Следовательно, по правилу произведения имеется 8⋅A38 чисел, оканчивающихся цифрой 5.
По правилу суммы находим, сколько существует чисел, удовлетворяющих условию задачи A49+8⋅A38=3024+8⋅336=5712
ответ: 5712
одну книгу.
Получиться, что нам надо расставить всеми возможными
4-ре книги. То есть надо подсчитать количество перестановок из 4 элементов.Это будет
Но между собой 1-ый и 2-ой тома можно переставлять
то есть будет два варианта расстановки 1 и 2 томов:
сначала 1-ый том, потом 2-ой и наоборот, сначала 2-ой том, затем 1-ый.)
По правилу произведения получаем, что расстановки 5 томов сборника сочинений А.С.Пушкина будет 4!*2!=24*2=48 .