Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х: y = (2x-1) / (x+3) x = (2y-1) / (y+3) - выражаем теперь у через х: x(y+3) = 2y - 1 y(2-x) = 3x+1 y = (3x+1) / (2-x) - обратная функция. Теперь необходимо ее построить. 1) Найти точки экстремума и (или) точки перегиба: y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения. 2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у. 3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0). 4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
y = (2x-1) / (x+3)
x = (2y-1) / (y+3) - выражаем теперь у через х:
x(y+3) = 2y - 1
y(2-x) = 3x+1
y = (3x+1) / (2-x) - обратная функция.
Теперь необходимо ее построить.
1) Найти точки экстремума и (или) точки перегиба:
y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения.
2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у.
3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0).
4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
Пусть х дм - длина одного катета, тогда
(23+х) дм - длина другого катета.
37 дм - гипотенуза
ОДЗ: 0<x<37
Согласно теореме Пифагора для прямоугольного треугольника сумма квадратов катетов равна квадрату гипотенузы, получаем уравнение:
x² + (23+x)² = 37²
x² + 529 + 46x + x² = 1369
2x²+46x+529-1369 = 0
2x²+46x-840 = 0 |:2
x²+23x-420 = 0
D = 23² - 4·1·(-420) = 529+1680 = 2209 = 47²
x₁ = (-23-47)/2 = -60/2 = - 30 < 0 не удовлетворяет ОДЗ.
x₂ = (-23+47)/2 = 24/2 = 12 удовлетворяет ОДЗ.
Получаем:
12 дм - длина одного катета;
23+12 =35 дм - длина другого катета;
37 дм - гипотенуза
Найдем периметр прямоугольного треугольника:
12 + 35 + 37 = 84 (дм)
ответ: 84 дм