Покажем на рисунке необходимые величины. Ось X направим по направлению движения. Так как скорость спринтера растёт, то ускорение направлено также по движению (по скорости). Это можно понять, если проанализировать формулу (6) – вектор v будет увеличиваться, если он направлен по вектору a ! Впрочем, если ты не знаешь, куда направить ускорение – ничего страшного – направляй куда-нибудь (в этой задаче, естественно, либо по движению, либо против). Знак ответа даст тебе правильное направление: если получится (+), то ускорение было направлено правильно, ну а если (–), то в другую сторону.
Запишем формулы (6) и (7) в проекции на ось X для данной задачи:
v A=at ; S= at 2
По условию начальная скорость v0=0 , а так как все вектора 2 направлены по оси X, то везде знаки (+). Из первой формулы можно найти ускорение a=vtA =5 м/с2 , подставляя которое во вторую формулу получим перемещение (и путь, так как движение происходит вдоль прямой в одну сторону): S=10м .
Определите степень,старший коэффициент и свободный член многочлена
Степенью многочлена называют наибольшую из степеней входящих в него одночленов.
Значит нам нужно найти наибольшую степень при х
не буду вдаваться в объяснения как возводить многочлен в n-ную степень.. но есть правило, по которому, при возведении в степень первый и последний члены будут возводиться в ту степень в которую возводится весь многочлен
попробуем на конкретном примере
мы видим что наибольшая степень при х³⁴
старший коэффициент- это число стоящее перед х в наибольшей степени. В нашем случае это 3¹⁷
и свободный член это 1+1 ( 1 из первого слагаемого и 1 из второго слагаемого) =2
Путь (S) = 10 м
Ускорение (а) = 5м/с2
Объяснение:
Покажем на рисунке необходимые величины. Ось X направим по направлению движения. Так как скорость спринтера растёт, то ускорение направлено также по движению (по скорости). Это можно понять, если проанализировать формулу (6) – вектор v будет увеличиваться, если он направлен по вектору a ! Впрочем, если ты не знаешь, куда направить ускорение – ничего страшного – направляй куда-нибудь (в этой задаче, естественно, либо по движению, либо против). Знак ответа даст тебе правильное направление: если получится (+), то ускорение было направлено правильно, ну а если (–), то в другую сторону.
Запишем формулы (6) и (7) в проекции на ось X для данной задачи:
v A=at ; S= at 2
По условию начальная скорость v0=0 , а так как все вектора 2 направлены по оси X, то везде знаки (+). Из первой формулы можно найти ускорение a=vtA =5 м/с2 , подставляя которое во вторую формулу получим перемещение (и путь, так как движение происходит вдоль прямой в одну сторону): S=10м .
Степенью многочлена называют наибольшую из степеней входящих в него одночленов.
Значит нам нужно найти наибольшую степень при х
не буду вдаваться в объяснения как возводить многочлен в n-ную степень.. но есть правило, по которому, при возведении в степень первый и последний члены будут возводиться в ту степень в которую возводится весь многочлен
попробуем на конкретном примере
мы видим что наибольшая степень при х³⁴
старший коэффициент- это число стоящее перед х в наибольшей степени. В нашем случае это 3¹⁷
и свободный член это 1+1 ( 1 из первого слагаемого и 1 из второго слагаемого) =2