В решении.
Объяснение:
Решить уравнения:
1) (x-2)(x+2)+x(x-4)=6x-1
х²-4+х²-4х=6х-1
2х²-10х-3=0
Разделить уравнение на 2 для упрощения:
х²-5х-1,5=0, квадратное уравнение, ищем корни:
D=b²-4ac =25+6=31 √D= √31
х₁=(-b-√D)/2a
х₁=(5-√31)/2
х₂=(-b+√D)/2a
х₂=(5+√31)/2
2)(2x+1)²+(x-3)²=5(x+1)(x-1)
Раскрыть скобки:
4х²+4х+1+х²-6х+9=5х²-5
Привести подобные члены:
-2х= -5-10
-2х= -15
х= -15/-2
х=7,5
Проверка путём подстановки вычисленного значения х в уравнение показала, что данное решение удовлетворяет данному уравнению.
3)Решить систему уравнений:
4x-y=5
5x+2y= -7
Выразить у через х в первом уравнении, подставить выражение во второе уравнение и вычислить х:
-у=5-4х
у=4х-5
5х+2(4х-5)= -7
5х+8х-10= -7
13х= -7+10
13х=3
х=3/13;
у=(4*3)/13-5
у=12/13-5
у= -4 и 1/13
Решение системы уравнений (3/13; -4 и 1/13).
Проверка путём подстановки вычисленных значений х и у в уравнения показала, что данное решение удовлетворяет данной системе уравнений.
y=Π/3-x
sin x+cos(Π/3-x)=1
sin x+cos Π/3*cos x+sin Π/3*sin x=1
sin x*(1+√3/2)+cos x*1/2=1
Переходим к половинным аргументам и умножаем все на 2.
2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)
Переносимости все в одну сторону
3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0
Делим все на cos^2(x/2)
3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0
Замена t=tg(x/2)
3t^2-(4+2√3)*t+1=0
Получили обычное квадратное уравнение
D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3
t1=tg(x/2)=[2+√3-√(4+4√3)]/3
t2=tg(x/2)=[2+√3+√(4+4√3)]/3
Соответственно
x1=2*arctg(t1)+Π*n; y1=Π/3-x1
x2=2*arctg(t2)+Π*n; y2=Π/3-x2
В решении.
Объяснение:
Решить уравнения:
1) (x-2)(x+2)+x(x-4)=6x-1
х²-4+х²-4х=6х-1
2х²-10х-3=0
Разделить уравнение на 2 для упрощения:
х²-5х-1,5=0, квадратное уравнение, ищем корни:
D=b²-4ac =25+6=31 √D= √31
х₁=(-b-√D)/2a
х₁=(5-√31)/2
х₂=(-b+√D)/2a
х₂=(5+√31)/2
2)(2x+1)²+(x-3)²=5(x+1)(x-1)
Раскрыть скобки:
4х²+4х+1+х²-6х+9=5х²-5
Привести подобные члены:
-2х= -5-10
-2х= -15
х= -15/-2
х=7,5
Проверка путём подстановки вычисленного значения х в уравнение показала, что данное решение удовлетворяет данному уравнению.
3)Решить систему уравнений:
4x-y=5
5x+2y= -7
Выразить у через х в первом уравнении, подставить выражение во второе уравнение и вычислить х:
-у=5-4х
у=4х-5
5х+2(4х-5)= -7
Раскрыть скобки:
5х+8х-10= -7
13х= -7+10
13х=3
х=3/13;
у=4х-5
у=(4*3)/13-5
у=12/13-5
у= -4 и 1/13
Решение системы уравнений (3/13; -4 и 1/13).
Проверка путём подстановки вычисленных значений х и у в уравнения показала, что данное решение удовлетворяет данной системе уравнений.
y=Π/3-x
sin x+cos(Π/3-x)=1
sin x+cos Π/3*cos x+sin Π/3*sin x=1
sin x*(1+√3/2)+cos x*1/2=1
Переходим к половинным аргументам и умножаем все на 2.
2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)
Переносимости все в одну сторону
3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0
Делим все на cos^2(x/2)
3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0
Замена t=tg(x/2)
3t^2-(4+2√3)*t+1=0
Получили обычное квадратное уравнение
D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3
t1=tg(x/2)=[2+√3-√(4+4√3)]/3
t2=tg(x/2)=[2+√3+√(4+4√3)]/3
Соответственно
x1=2*arctg(t1)+Π*n; y1=Π/3-x1
x2=2*arctg(t2)+Π*n; y2=Π/3-x2