Подставим х=8, у=0 в выражение у=ах²+bx+c получим 0=а·8²+b·8+c 64a+8b+c=0
Наименьшее значение в вершине параболы, при условии, что ветви параболы направлены вверх, при этом а > 0 абсцисса вершины: х₀=-b/2а ⇒ 6=-b/2a ⇒-b=12a ⇒ b=-12a y₀=a·6²+b·6+c ⇒ -12=36a+6b+c Решаем систему трех уравнений с тремя неизвестными: { 64a+8b+c=0 ⇒ 64 a + 8· (-12a)+c=0 -32a + c= 0 (*) { b=- 12a { -12=36a+6b+c ⇒ 36a +6·(-12a)+c=-12 -36a +c= -12 (**)
1. x+x+2=38 (взяли первое чётное число за х, второе соответственно за х+2, ибо оно тоже чётное)
2x=36
x=18
Первое число 18, второе 20 (т.к. первое число у нас х, а второе х+2)
2. х+х+2+х+4=18 (первое число чётное за х, второе за х+2, третье за х+4)
3х=12
х=4
Первое число 4, второе 6, третье 8.
3. х+х+2=24 (тут по аналогии с предыдущими, но за х взяли нечётное число)
2х=22
х=11
Первое число 11, второе 13.
4. х+х+2+х+4=21 (тоже за х взяли нечётное)
3х=15
х=5
Первое число 5, второе 7, третье 9.
получим
0=а·8²+b·8+c
64a+8b+c=0
Наименьшее значение в вершине параболы, при условии, что ветви параболы направлены вверх, при этом а > 0
абсцисса вершины:
х₀=-b/2а ⇒ 6=-b/2a ⇒-b=12a ⇒ b=-12a
y₀=a·6²+b·6+c ⇒ -12=36a+6b+c
Решаем систему трех уравнений с тремя неизвестными:
{ 64a+8b+c=0 ⇒ 64 a + 8· (-12a)+c=0 -32a + c= 0 (*)
{ b=- 12a
{ -12=36a+6b+c ⇒ 36a +6·(-12a)+c=-12 -36a +c= -12 (**)
Вычитаем из (*) (**)
4а=12 ⇒ а=3
b=-12·3=-36
c=32a =32·3=96
ответ. у= 3х²-36х+96