В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Tumka2003
Tumka2003
25.12.2020 17:34 •  Алгебра

Определите количество корней уравнения sin^2 x + 3/2cos^2 x = 5/2 sinx × cosx на промежутке (-pi; pi)

Показать ответ
Ответ:
Kymir1
Kymir1
21.09.2020 01:50
sin^2x+\frac{3}{2}cos^2x=\frac{5}{2}sinx\cdot cosx\; |:cos^2x\ne 0\\\\tg^2x-\frac{5}{2}tgx+\frac{3}{2}=0\\\\t=tgx\; ,\; \; \; 2t^2-5t+3=0\\\\D=25-24=1\; ,\; t_1=\frac{5-1}{4}=1\; ,\; t_2=\frac{5+1}{4}=\frac{3}{2}\\\\a)\; tgx=1\; ,\; x=\frac{\pi}{4}+\pi n,\; n\in Z\\\\b)\; tgx=\frac{3}{2}\; ,\; x=arctg\frac{3}{2}+\pi k\; ,\; k\in Z\\\\c)\; x\in ( -\pi ;\pi )\; \; \to \\\\x_1=-\frac{3\pi}{4}\; ;\; x_2=arctg\frac{3}{2}-\pi \; ;\; x_3=\frac{\pi}{4}\; ;\; x_4=arctg\frac{3}{2}

ответ:  4.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота