Можно заметить что очки начисляются как 2 в степени (минута игры -1)
Соответственно, логарифмируя конечную цифру 100000 по основанию 2 получаем результат - 16,61. То есть, результат 100000 будет достигнут через (16,61+1)=17,61 минут с начала игры. Но, так как очки начисляются только по истечении целой минуты, то после 17 минут игры 100000 еще не будет,а после 18 минут - будет результат превышающий 100000.
а) Является ли последовательность бесконечно убывающей геометрической прогрессией если она задана формулой bn=(-4)ⁿ⁺²?
Если знаменатель |q|<1, то такая последовательность называется бесконечно убывающей геометрической прогрессией.
Значит, чтобы ответить на вопрос задания, нужно вычислить q.
b₁ = (-4)¹⁺² = (-4)³ = -64;
b₂ = (-4)²⁺² = (-4)⁴ = 256;
q = b₂/b₁
q = 256/-64
q = -4.
|q| = |-4|
|q| > 1, значит, данная прогрессия не является бесконечно убывающей геометрической прогрессией.
б) Записать бесконечную периодическую десятичную дробь 0,(12) в виде обыкновенной дроби.
Периодическая дробь — бесконечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определенная группа цифр.
0,(12) = 0,121212121212 до бесконечности.
Чтобы производить какие-то действия с периодической дробью, её нужно округлить до сотых:
Через 18 минут
Объяснение:
после 1 минуты 1 очко - 2⁰=1
после 2 минуты 1*2=2 очка = 2¹
после 3 - 4 очка =2²
после 4 - 8 очков =2³
после 5 - 16 очков = 2⁴
после n минут 2ⁿ⁻¹ очков
Можно заметить что очки начисляются как 2 в степени (минута игры -1)
Соответственно, логарифмируя конечную цифру 100000 по основанию 2 получаем результат - 16,61. То есть, результат 100000 будет достигнут через (16,61+1)=17,61 минут с начала игры. Но, так как очки начисляются только по истечении целой минуты, то после 17 минут игры 100000 еще не будет,а после 18 минут - будет результат превышающий 100000.
Проверяем:
2¹⁷⁻¹ = 65536 очков после 17 минут игры
2¹⁸⁻¹ = 131072 очка после 18 минут игры.
В решении.
Объяснение:
а) Является ли последовательность бесконечно убывающей геометрической прогрессией если она задана формулой bn=(-4)ⁿ⁺²?
Если знаменатель |q|<1, то такая последовательность называется бесконечно убывающей геометрической прогрессией.
Значит, чтобы ответить на вопрос задания, нужно вычислить q.
b₁ = (-4)¹⁺² = (-4)³ = -64;
b₂ = (-4)²⁺² = (-4)⁴ = 256;
q = b₂/b₁
q = 256/-64
q = -4.
|q| = |-4|
|q| > 1, значит, данная прогрессия не является бесконечно убывающей геометрической прогрессией.
б) Записать бесконечную периодическую десятичную дробь 0,(12) в виде обыкновенной дроби.
Периодическая дробь — бесконечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определенная группа цифр.
0,(12) = 0,121212121212 до бесконечности.
Чтобы производить какие-то действия с периодической дробью, её нужно округлить до сотых:
0,(12) ≈ 0,12.
0,(12)=4/33 (в виде обыкновенной дроби).