1) 6см. 9 см. 30 см.
2) 15 км/час.
Объяснение:
Площадь прямоугольника, одна из сторон которого на 3 см больше другой, равна 54 см2.
Найдите стороны и периметр прямоугольника.
Решение.
Пусть одна сторона равна х см. Тогда другая равна х+3 см.
Площадь S=ab или S=x*(x+3);
x²+3x-54=0;
x1=6; x2= -9 - не соответствует условию.
х=6 см = величина одной из сторон.
х+3=6+3=9 см = величина второй стороны.
Периметр прямоугольника равен Р=2(a+b)=2 (6+9)=2*15=30 см.
***
2. Катер 5 км по течению
и 8 км по озеру,
затратив на весь путь 1 ч.
Скорость течения реки равна 3 км/ч.
Найдите скорость катера по течению.
пусть х км/час - скорость катера в стоячей воде (по озеру).
Тогда по течению реки скорость будет равна х+3 км/час.
На путь 8 км по озеру катер затратил 8/х часов.
На путь 5 км по течению катер затратил 5/(х+3) часа.
На весь путь затратил 1 час.
8/х+5/(х+3)=1;
8(х+3)+5х=х(х+3);
8х+24+5х=х²+3х;
х²+3х-8х-5х-24=0;
х²-10х-24=0;
По теореме Виета
х1+х2=10; х1*х2=-24;
х1=12; x2= -2 - не соответствует условию
х=12 км/час - скорость катера в стоячей воде.
х+3= 12+3=15 км/час - скорость катера по течению.
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
1) 6см. 9 см. 30 см.
2) 15 км/час.
Объяснение:
Площадь прямоугольника, одна из сторон которого на 3 см больше другой, равна 54 см2.
Найдите стороны и периметр прямоугольника.
Решение.
Пусть одна сторона равна х см. Тогда другая равна х+3 см.
Площадь S=ab или S=x*(x+3);
x²+3x-54=0;
x1=6; x2= -9 - не соответствует условию.
х=6 см = величина одной из сторон.
х+3=6+3=9 см = величина второй стороны.
Периметр прямоугольника равен Р=2(a+b)=2 (6+9)=2*15=30 см.
***
2. Катер 5 км по течению
и 8 км по озеру,
затратив на весь путь 1 ч.
Скорость течения реки равна 3 км/ч.
Найдите скорость катера по течению.
Решение.
пусть х км/час - скорость катера в стоячей воде (по озеру).
Тогда по течению реки скорость будет равна х+3 км/час.
На путь 8 км по озеру катер затратил 8/х часов.
На путь 5 км по течению катер затратил 5/(х+3) часа.
На весь путь затратил 1 час.
8/х+5/(х+3)=1;
8(х+3)+5х=х(х+3);
8х+24+5х=х²+3х;
х²+3х-8х-5х-24=0;
х²-10х-24=0;
По теореме Виета
х1+х2=10; х1*х2=-24;
х1=12; x2= -2 - не соответствует условию
х=12 км/час - скорость катера в стоячей воде.
х+3= 12+3=15 км/час - скорость катера по течению.
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение: