Простое тригонометрическое уравнение. Косинус равен минус 1/2, когда его аргумент равен (120° или 2π/3) и (240° или 4π/3). Ещё следует добавить период 2πn, где n ∈ Z (целое).
Т.е. решением cos(x-π/4) = -1/2 будет: 1) x - π/4 = 2π/3 + 2πn; x = 2π/3 + π/4 + 2πn = 11π/12 + 2πn 2) x - π/4 = 4π/3 + 2πn; x = 4π/3 + π/4 + 2πn = 19π/12 + 2πn
Если последнее чем-то не нравится, то можно из решения вычесть один период, т.е. 2π = 24π/12. Тогда, второе решение буде выглядеть так: x = 19π/12 + 2πn - 24π/12 = -5π/12 + 2πn. Но это одно и тоже.
Т.е. решением cos(x-π/4) = -1/2 будет:
1) x - π/4 = 2π/3 + 2πn; x = 2π/3 + π/4 + 2πn = 11π/12 + 2πn
2) x - π/4 = 4π/3 + 2πn; x = 4π/3 + π/4 + 2πn = 19π/12 + 2πn
Если последнее чем-то не нравится, то можно из решения вычесть один период, т.е. 2π = 24π/12. Тогда, второе решение буде выглядеть так: x = 19π/12 + 2πn - 24π/12 = -5π/12 + 2πn. Но это одно и тоже.
1) y=3x^2-12x
0=3x^2-12x
3x^2-12x= 0
3x*(x-4)=0
x*(x-4) = 0
x=0
x-4=0
x=0
x=4
x1=0; x2=4
По графіку 1:
Корені (0;0) (4;0)
Область визначення x € R
Мінімум (2;-12)
Перетин з віссю ординат (0;0)
2) y=-2x³+5,2x
0=-2x³+5,2x
-2x³+5,2x= 0
-2x³+26/5x=0
-x*(2x²-26/5)=0
x*(2x²-26/5)=0
x=0
2x²-26/5=0
x=0
x=-√65/5
x=√65/5
x1=-√65/5; x2=0; x3=√65/5
x1≈-1,61245; x2=0; x3≈1,61245
По графіку 2:
Корені (-√65/5;0) (0;0)
(√65/5;0)
Область визначення x € R
Мінімум (-√195/15; -52√195/225
Максимум (√195/15; 52√195/225)
Перетин з віссю ординат (0;0)
3)y=-x²+6x-9
0=-x²+6x-9
0+x²-6x+9=0
(x-3)²=0
x-3=0
x=3
По графіку 3:
Корені (3;0)
Область визначення x € R
Максимум (3;0)
Перетин з віссю ординат (0;-9)
4)y=-x²-2,8x
0=-x²-2,8x
-x²-2,8x=0
-x²-14/5x=0
-x*(x+14/5)=0
x*(x+14/5)=0
x=0
x+14/5=0
x=0
x=-14/5
x1=-14/5 x2=0
x1=-2,8 x2=0
По графіку 4:
Корені (-14/5;0) (0;0)
Область визначення x € R
Максимум (-7/5; 49/25)
Перетин з віссю ординат (0;0)