Решение: Пусть второй ученик выполнит заказ за х часов, тогда слюсар выполнит заказ за (х-8) часов, а первый ученик (х-8)+2=(х-6) часов, за один час работы первый ученик сделает 1\(х-6) работы, второй 1\х работы, за х-8 часов первый ученик сделает (х-8)\(х-6) работы, второй
(х-8)\х работы, по условию задачи составляем уравнение:
(х-8)\(х-6)+(х-8)\х=1
Решаем уравнение:
(x-8)*(x-6+x)=(x-6)*x, раскрываем скобки, сводим подобные члены
(x-8)*(2x-6)=x^2-6x, раскрываем скобки, переносим слагаемые в левую часть уравнения
2x^2-16x-6x+48-x^2+6x=0, сводим подобные члены
x^2-16x+48=0, раскладываем на множители
(x-4)(x-12)=0, произведение равно 0, если хотя бы один из множителей равен 0, поэтому получаем два уравнения,
первое
х-4=0, или
x=4 (что невозможно х-8=4-8=-4 – а количество времени на заказ слесаря не может быть отрицательным)
второе х-12=0, или
x=12
х-8=12-8=4
х-6=12-6=6
ответ: слесарь выполнит заказ за 4 часа, первый ученик за 6 часов, второй за 12 часов
Пусть х(км/ч)-скорость с которой велосипедист проехал вторые 40км пути, тогда первые 40км пути он проехал со скоростью (х+10)км/ч. Время затраченное на первые 40км равно 40/(х+10)ч., а на вторые 40км пути 40/х(ч). По условию на весь путь было затрачено 10/3(ч). Составим и решим уравнение:
40/(х+10) + 40/х = 10/3, ОДЗ: х-не равен -10, 0.
Умножаем обе части уравнения на общий множитель: 3х(х+10), получаем:
120х+120х+1200=10х(в квадр)+100х,
-10х(в квадр)+140х+1200=0,
-х(в квадр) +14х+120=0,
Д=196+480=676, 2корня
х=(-14+26)/-2=-6-не является решением задачи
х=(-14-26)/-2=20
20(км/ч)-скорость с которой ехал велосипедист поледние 40км пути.
Решение: Пусть второй ученик выполнит заказ за х часов, тогда слюсар выполнит заказ за (х-8) часов, а первый ученик (х-8)+2=(х-6) часов, за один час работы первый ученик сделает 1\(х-6) работы, второй 1\х работы, за х-8 часов первый ученик сделает (х-8)\(х-6) работы, второй
(х-8)\х работы, по условию задачи составляем уравнение:
(х-8)\(х-6)+(х-8)\х=1
Решаем уравнение:
(x-8)*(x-6+x)=(x-6)*x, раскрываем скобки, сводим подобные члены
(x-8)*(2x-6)=x^2-6x, раскрываем скобки, переносим слагаемые в левую часть уравнения
2x^2-16x-6x+48-x^2+6x=0, сводим подобные члены
x^2-16x+48=0, раскладываем на множители
(x-4)(x-12)=0, произведение равно 0, если хотя бы один из множителей равен 0, поэтому получаем два уравнения,
первое
х-4=0, или
x=4 (что невозможно х-8=4-8=-4 – а количество времени на заказ слесаря не может быть отрицательным)
второе х-12=0, или
x=12
х-8=12-8=4
х-6=12-6=6
ответ: слесарь выполнит заказ за 4 часа, первый ученик за 6 часов, второй за 12 часов
Пусть х(км/ч)-скорость с которой велосипедист проехал вторые 40км пути, тогда первые 40км пути он проехал со скоростью (х+10)км/ч. Время затраченное на первые 40км равно 40/(х+10)ч., а на вторые 40км пути 40/х(ч). По условию на весь путь было затрачено 10/3(ч). Составим и решим уравнение:
40/(х+10) + 40/х = 10/3, ОДЗ: х-не равен -10, 0.
Умножаем обе части уравнения на общий множитель: 3х(х+10), получаем:
120х+120х+1200=10х(в квадр)+100х,
-10х(в квадр)+140х+1200=0,
-х(в квадр) +14х+120=0,
Д=196+480=676, 2корня
х=(-14+26)/-2=-6-не является решением задачи
х=(-14-26)/-2=20
20(км/ч)-скорость с которой ехал велосипедист поледние 40км пути.