Прежде всего, так как выражение x²-4*x+3 находится под знаком логарифма, то оно должно быть положительно, т.е. должно выполняться неравенство x²-4*x+3>0. Далее, так как функция y=log8(x) - возрастающая, то из заданного неравенства следует неравенство x²-4*x+3<8¹=8, или x²-4*x-5<0. Решая квадратное уравнение x²-4*x-5=0 и находим его корни x1=-1 и переписываем данное неравенство в виде (x+1)*(x-5)-<0. Решая его методом интервалов, находим x∈(-1;5). Решая теперь неравенство x²-4*x+3>0, находим x∈(-∞;1)∪(3;∞). Объединяя решения этих неравенств, находим x∈(-1;1)∪(3;5).
В решении.
Объяснение:
График функции, заданной уравнением у = (а + 1)х + а - 1 пересекает ось абсцисс в точке с координатами (-6; 0).
а) Найди значение а:
Подставить известные значения х и у (координаты точки) в уравнение, вычислить а:
у = (а + 1)х + а - 1
0 = (а + 1)*(-6) + а - 1
0 = -6а - 6 + а - 1
0 = -5а - 7
5а = -7
а = -7/5 (деление)
а = -1,4;
б) запишите функцию в виде у=kx+b;
Коэффициент k = (а + 1) = -1,4 + 1 = -0,4;
k = -0,4;
b = (а - 1) = -1,4 - 1
b = -2,4;
Уравнение функции:
у = -0,4х - 2,4.
ответ: x∈(-1;1)∪(3;5).
Объяснение:
Прежде всего, так как выражение x²-4*x+3 находится под знаком логарифма, то оно должно быть положительно, т.е. должно выполняться неравенство x²-4*x+3>0. Далее, так как функция y=log8(x) - возрастающая, то из заданного неравенства следует неравенство x²-4*x+3<8¹=8, или x²-4*x-5<0. Решая квадратное уравнение x²-4*x-5=0 и находим его корни x1=-1 и переписываем данное неравенство в виде (x+1)*(x-5)-<0. Решая его методом интервалов, находим x∈(-1;5). Решая теперь неравенство x²-4*x+3>0, находим x∈(-∞;1)∪(3;∞). Объединяя решения этих неравенств, находим x∈(-1;1)∪(3;5).