В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
rage13371
rage13371
21.11.2021 12:29 •  Алгебра

Определитель, при каких значения "с" наименьшее значение функции у=2х^2-8х+с равно 2. с решением, . заранее )

Показать ответ
Ответ:
veronika13571
veronika13571
16.08.2020 21:19
Графиком функции y(x)=2*x^2-8*x+c есть парабола "ветками вверх", т.е. у этой функции есть минимальное значение, и оно отвечает вершине параболы на графике

x_0=-\frac{b}{2a}=-\frac{-8}{2*2}=2\\\\
y_0=y(x_0)=y(2)=2*2^2-8*2+c=8-8*2+c=-8+c

и по условию y_0=2
-8+c=2\\\\
c=10

-----------------------------------\\
Альтернатива:\\
выделить полный квадрат в функции:\\
y(x)=2x^2-8x+c=2*[x^2-4x]+c=\\\\
=2*[x^2-2*x*2]+c=2*[x^2-2*x*2+2^2-2^2]+c=\\\\
=2*[(x-2)^2-2^2]+c=2*(x-2)^2-2*2^2+c=\\\\
=2(x-2)^2-8+c

минимальное значении функции будет достигаться, когда значение квадрата равно нуль, т.е. (x-2)^2=0, т.е. когда x=2
т.е. минимальное значение функции:
y_0=y(2)=2*(2-2)^2-8+c=2*0-8+c=-8+c
-8+c=2\\
c=10
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота