Смотри первое приложение. Закрасим 7 клеток чтобы выполнялось условие (лев. квадрат 5х5). Докажем, что меньше семи клеток быть не может (прав. квадрат 5х5). Рассмотрим два квадрата 3х3 (красн. и син.). Чтобы количество закрашенных клеток было минимальным, необходимо закрасить все общие клетки этих квадратов (1 центральная). Видим, что для двух этих квадратов необходимо закрасить ещё по 3 клетки, чтобы всего было по 4. Тогда минимальное количество клеток 1+3+3=7, что и требовалось доказать. Во втором приложении я рассмотрел каждый квадрат 3х3, чтобы показать правильность расстановки.
ответ: 7.
Объяснение:
Смотри первое приложение. Закрасим 7 клеток чтобы выполнялось условие (лев. квадрат 5х5). Докажем, что меньше семи клеток быть не может (прав. квадрат 5х5). Рассмотрим два квадрата 3х3 (красн. и син.). Чтобы количество закрашенных клеток было минимальным, необходимо закрасить все общие клетки этих квадратов (1 центральная). Видим, что для двух этих квадратов необходимо закрасить ещё по 3 клетки, чтобы всего было по 4. Тогда минимальное количество клеток 1+3+3=7, что и требовалось доказать. Во втором приложении я рассмотрел каждый квадрат 3х3, чтобы показать правильность расстановки.1) 2sin x-1=0
sinx = 1/2
x = (-1)^n arcsin(1/2) + πk, k∈Z
x = (-1)^n (π/6) + πk, k∈Z
2) cos(2x+П/6)+1=0
cos(2x+П/6) = - 1
2x+П/6 = π + 2πn, n∈Z
2x = π - π/6 + 2πn, n∈Z
2x = 5π/6 + 2πn, n∈Z
x = 5π/12 + πn, n∈Z
3) 6sin²x - 5cosx + 5 = 0
6(1 - cos²x) - 5cosx + 5 = 0
6 - 6cos²x - 5cosx + 5 = 0
6cos²x + 5cosx - 11 = 0
cosx = t, ItI ≤ 1
6t² + 5t - 11 = 0
D = 25 + 4*6*11 = 289
t₁ = (- 5 - 17)/12
t₁ = - 22/12
t₁ = -11/6
t₁ = - 1 (5/6) не удовлетворяет условию ItI ≤ 1
t₂ = (- 5 + 11)/12
t₂ = 1/2
cosx = 1/2
x = (+ -)arccos(1/2) + 2πm, m∈Z
x = (+ -) *(π/3) + 2πm, m∈Z