В задании говорится о четырехзначных числах, т.е. множества из четырех чисел отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений Amn=n!(n−m)!, где n=6 - общее количество чисел, m=4 - число чисел в выборке.
Находим:
d1=A46=6!(6−4)!=3∗4∗5∗6=360
При этом нужно учесть, что числа не могут начинаться с 0, т.е. это количество чисел (начинающихся с 0) нужно вычесть из полученного количества. Первая цифра этих четырехзначных чисел известна - 0, а остальное количество чисел находим по формуле Размещения, где n=5, m=3, т.к. одна цифра (0) уже использована
d2=5!2!=3∗4∗5=60
Получили, что количество четырехзначных чисел равно D=d1−d2=360−60=300
б) цифры могут повторяться;
В задании говорится о четырех значных числах, цифры которых могут повторятся, множества из четырех чисел с повторениями отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений с повторениями (Amn)сповторениями=nm, где n=6 - общее количество чисел, m=4 - число чисел в выборке при этом нужно учесть, что на первой позиции может быть любое число кроме 0, т.е. возможная выборка - 5 чисел, поэтому количество возможных чисел можно выразить так
цифры не повторяются;
В задании говорится о четырехзначных числах, т.е. множества из четырех чисел отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений Amn=n!(n−m)!, где n=6 - общее количество чисел, m=4 - число чисел в выборке.
Находим:
d1=A46=6!(6−4)!=3∗4∗5∗6=360
При этом нужно учесть, что числа не могут начинаться с 0, т.е. это количество чисел (начинающихся с 0) нужно вычесть из полученного количества. Первая цифра этих четырехзначных чисел известна - 0, а остальное количество чисел находим по формуле Размещения, где n=5, m=3, т.к. одна цифра (0) уже использована
d2=5!2!=3∗4∗5=60
Получили, что количество четырехзначных чисел равно D=d1−d2=360−60=300
б) цифры могут повторяться;
В задании говорится о четырех значных числах, цифры которых могут повторятся, множества из четырех чисел с повторениями отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений с повторениями (Amn)сповторениями=nm, где n=6 - общее количество чисел, m=4 - число чисел в выборке при этом нужно учесть, что на первой позиции может быть любое число кроме 0, т.е. возможная выборка - 5 чисел, поэтому количество возможных чисел можно выразить так
D=5∗6∗6∗6=5∗63=1080
1. найдем производную. y'=6x²-6x-72=6(x²-x-12)
2. найдем стационарные точки. 6(x²-x-12)=0, по Виету х=4; х=-3.
3. Выясним, как ведет себя производная при переходе через эти точки. решив неравенство, например, y'>0, методом интервалов.
-34
+ - +
точка х=-3- точка максимума, максимум равен у(-3)=2*(-3)³ - 3*(-3)²- 72*(-3) + 5=-54-27+216+5=221-81=140
точка х=4- точка минимума, минимум функции равен
у(4)=2*4³ - 3*4²- 72*4 + 5=128-48-228+5=-143
Интервалы монотонности - убывает функция при х∈[-3;4]
(-∞;-3] и при х∈[4;+∞)