В иррациональных уравнениях кроме ОДЗ нужно всегда учитывать дополнительные условия (ДУ) или всегда для проверки подставлять полученные корни в исходное уравнение.
Рассмотрим исходное уравнение:
Далее мы возводим это уравнение в квадрат, но это неэквивалентный переход - например, неправильное равенство -1 = 1 переходит в правильное 1 = 1, поэтому на этом этапе легко приобрести лишние корни, что и произошло.
В правой части исходного уравнения находится неотрицательный корень, поэтому в ДУ необходимо потребовать неотрицательность левой части:
Как раз это ДУ и позволяет в процессе решения откинуть лишний корень
xy = - 3
x = 6 - y
y( 6 - y ) = - 3
6y - y^2 = - 3
y^2 - 6y - 3 = 0
D = 36 + 12 = 48
√ D = √ 48 = 4 √ 3
y1 = ( 6 + 4 √ 3 ) : 2 = 3 + 2 √ 3
y2 = 3 - 2 √ 3
x = 6 - y
x1 = 6 - ( 3 + 2 √ 3 ) = 3 - 2 √ 3
x2 = 6 - ( 3 - 2 √ 3 ) = 3 + 2 √ 3
x^4 = ?
1) ( 3 - 2 √ 3 )^4 = ?
( 3 - 2 √ 3 )^2 = 9 - 12*3 + 4*3 = 9 - 36 + 12 = - 15
( 3 - 2 √ 3 )^4 = - 15 * ( - 15 ) = 225
2) ( 3 + 2 √ 3 )^2 = 9 + 12*3 + 4*3 = 9 + 36 + 12 = 57
( 3 - 2 √ 3 )^4 = 57 * 57 = 3249
1) X^4 + y^4 = 225 + 3249 = 3474
2) X^4 + y^4 = 57 + 225 = 282
В иррациональных уравнениях кроме ОДЗ нужно всегда учитывать дополнительные условия (ДУ) или всегда для проверки подставлять полученные корни в исходное уравнение.
Рассмотрим исходное уравнение:
Далее мы возводим это уравнение в квадрат, но это неэквивалентный переход - например, неправильное равенство -1 = 1 переходит в правильное 1 = 1, поэтому на этом этапе легко приобрести лишние корни, что и произошло.
В правой части исходного уравнения находится неотрицательный корень, поэтому в ДУ необходимо потребовать неотрицательность левой части:
Как раз это ДУ и позволяет в процессе решения откинуть лишний корень