2) β = 180-(30+75) = 75°. Треугольник равнобедренный: с=в=4,56.
а = (b*sin α)/sin β = (4,56*0,5)/0,.965926 = 2,36043.
4) c = √(a²+b²-2ab*cosγ) = √(144+64-2*12*8*0,5) = √112 = 4√7 ≈ 10,58301.
sin β = b*sin γ / c = (8*√3)/(2*4√7) = √(3/7).
β = arc sin(√(3/7)) = 40,86339°.
α = 180-60-40,86339 = 79,10661°.
6) b =√(49+100-2*7*10*(-0,5)) = √219 ≈ 14,79865.
sin α = a*sin β/b = (*√3)/(2*√219) = 0,409644.
α = arc sin 0,409644 = 24,18547°.
γ = 180-120-24,18247 = 35,81753°.
8) Применяется теорема косинусов.
α = 18,19487°,
β = 128,68219°,
γ = 33,12294°.
2) β = 180-(30+75) = 75°. Треугольник равнобедренный: с=в=4,56.
а = (b*sin α)/sin β = (4,56*0,5)/0,.965926 = 2,36043.
4) c = √(a²+b²-2ab*cosγ) = √(144+64-2*12*8*0,5) = √112 = 4√7 ≈ 10,58301.
sin β = b*sin γ / c = (8*√3)/(2*4√7) = √(3/7).
β = arc sin(√(3/7)) = 40,86339°.
α = 180-60-40,86339 = 79,10661°.
6) b =√(49+100-2*7*10*(-0,5)) = √219 ≈ 14,79865.
sin α = a*sin β/b = (*√3)/(2*√219) = 0,409644.
α = arc sin 0,409644 = 24,18547°.
γ = 180-120-24,18247 = 35,81753°.
8) Применяется теорема косинусов.
α = 18,19487°,
β = 128,68219°,
γ = 33,12294°.
y=-x²-x+1
Это парабола, ветви направлены вниз.
Наибольшее значение функции - это вершина параболы.
х₀= - b = - (-1) = 1 =-0.5
2a 2*(-1) -2
y₀=-(-0.5)²-(-0.5)+1=-0.25+0.5+1=1.25 - наибольшее значение
ответ: 1,25
2) у=3-2х-2х²
у=-2х²-2х+3
х₀= -(-2) = 2 = -0,5
2*(-2) -4
у₀=-2*(-0,5)²-2*(-0,5)+3=-2*0,25+1+3=-0,5+4=3,5 - наибольшее
ответ: 3,5
3) у=5-2х-х²
у=-х²-2х+5
х₀= -(-2) = 2 =-1
2*(-1) -2
у₀=-(-1)²-2*(-1)+5=-1+2+5=6 - наибольшее
ответ: 6
4) у=-х²+9х-21
х₀= -9 = -9 = 4,5
2*(-1) -2
у₀=-4,5²+9*4,5-21=-20,25+40,5-21=-0,75 - наибольшее
ответ: -0,75