Пусть длина участка равна х м., а ширина - у м. Зная, что периметр = 160 м, а формула для нахождения периметра P=2*(a+b) и площадь участка = 1596 м^2 а формула S=a*b, составим систему уравнений:
Выразив одну величину через другую, выполним подстановку и решим уравнение с одним неизвестным, получим :
(80-у)*у=1596
80у-у^2=1596
y^2-80y+1596=0
D=b^2-4ac=80^2-4*1*1596=6400-6384=16 D>0, уравнение имеет 2 корня:
у1,2=(-b±√D)/2a
y1=(80-)/2*1=(80-4)/2=76/2=38
y2=(80+)/2*1=(80+4)/2=84/2=42
Тогда х1+38=80
х1=80-38=42
х2+42=80
х2=80-42=38. Значит размеры садового участка равны 38 м и 42 м, меньший из них равен 38 м
Чтобы дробь равнялась 0, надо чтобы числитель равнялся нулю, то есть 2х-5/х=0
Поскольку на 0 делить нельзя, то х не равен нулю, дальше решаем пример. 2х-5=0 х= 5/2
х^2-4/х-2=0 х^2-4=0 х=+-2, но +2 не подходит, поскольку в знаменателе будет 0, а на ноль делить нельзя.
12/7-х=х Найдём ОДЗ - х не должен быть равен 7, дальше умножим части уравнения на (7-х) чтобы избавиться от дроби. Получается 12=(7-х)х
Переносим влево - 12-(7-х)х=0. Раскрываем скобки, решаем уравнение
12-7х+х^2=0 Поменяем порядок, и решим квадратное уравнение
х^2-7х+12=0
х1=3
х2=4
Объяснение:
Пусть длина участка равна х м., а ширина - у м. Зная, что периметр = 160 м, а формула для нахождения периметра P=2*(a+b) и площадь участка = 1596 м^2 а формула S=a*b, составим систему уравнений:
Выразив одну величину через другую, выполним подстановку и решим уравнение с одним неизвестным, получим :
(80-у)*у=1596
80у-у^2=1596
y^2-80y+1596=0
D=b^2-4ac=80^2-4*1*1596=6400-6384=16 D>0, уравнение имеет 2 корня:
у1,2=(-b±√D)/2a
y1=(80-)/2*1=(80-4)/2=76/2=38
y2=(80+)/2*1=(80+4)/2=84/2=42
Тогда х1+38=80
х1=80-38=42
х2+42=80
х2=80-42=38. Значит размеры садового участка равны 38 м и 42 м, меньший из них равен 38 м