1)Это явление встречается только в половине циферблата 2)Тоже самое что и в первом 3)они находятся на одном диаметре циферблата только 30 секунд , то есть половина 4)В нем тоже самое как и в третьем
1) подкоренное выражение должно быть больше либо равно нулю; 2) знаменатель не может быть равен нулю. Поскольку у нас корень квадратный стоит в знаменателе, то подкоренное выражение должно быть строго больше нуля: х²-6х+5>0 Решение этого неравенства и будет областью определения функции. Сначала решим уравнение х²-6х+5=0, потом применим метод интервалов.
Подставив в выражение х²-6х+5 три произвольные значения, лежащие в промежутках (-∞; 1), (1; 4) и (4;+∞) (например, 0, 2 и 5), увидим, что оно (выражение) принимает отрицательные значения на промежутке (1;4), а на остальных двух промежутках - положительные. (Тут надо нарисовать числовую ось Ох, отметить на ней точки 1 и 4, перед 1 поставить + , между 1 и 4 поставить минус, а после 4 - снова плюс)
все 4 варианта
1)Это явление встречается только в половине циферблата 2)Тоже самое что и в первом 3)они находятся на одном диаметре циферблата только 30 секунд , то есть половина 4)В нем тоже самое как и в третьем
2) знаменатель не может быть равен нулю.
Поскольку у нас корень квадратный стоит в знаменателе, то подкоренное выражение должно быть строго больше нуля:
х²-6х+5>0
Решение этого неравенства и будет областью определения функции.
Сначала решим уравнение х²-6х+5=0, потом применим метод интервалов.
Подставив в выражение х²-6х+5 три произвольные значения, лежащие в промежутках (-∞; 1), (1; 4) и (4;+∞) (например, 0, 2 и 5), увидим, что оно (выражение) принимает отрицательные значения на промежутке (1;4), а на остальных двух промежутках - положительные. (Тут надо нарисовать числовую ось Ох, отметить на ней точки 1 и 4, перед 1 поставить + , между 1 и 4 поставить минус, а после 4 - снова плюс)
ответ: D(f)=(-∞; 1) ∪ (4;+∞)