Пусть x- скорость лодки в стоячей воде y- cкорость течения реки Тогда, x+y -скорость лодки по течению x-y - скорость лодки против течения Тогда, 16/x+y(ч)время за которое проплывает лодка 16 км по течению 16/x-y(ч) 16 км против течения А по условию по течению лодка проплывает на 6 часов быстрее чем против значит можно составить уравнение: 16/x-y -16/x+y =6 Также по условию известно ,что скорость лодки на 2 км больше скорости течения реки Состав им второе уравнение: x-y=2 Пешим полученную систему уравнений : Сперва упрастим первое уравнение избавившись от знаменателя ,получим : 32y=6x^2-6y^2 Затем выразим x из второго уравнения ,получим x=y+2 и подставим в первое: 32y=6*(2+y)^2-6y 32y=24+24y+6y^2-6y^2 8y=24 y=3 X=3+2 X=5 ответ :скорость лодки 5 км/ч скорость реки 3км/ч
система имеет бесконечно много решений если мы имеем тождество, не зависящее от переменных:
для этого нужно, чтобы коэфф. при х, у и правая часть совпадали с точностью до множителя. сейчас поясню:
в первом уравнении при х стоит 4, во втором 20, 20 = 4*5
в правой части первого уравнения стоит 3, во втором 15, 15 = 3*5
значит -а*5=10 => а=-2
при этом а, если мы домножим первое уравнение на 5 и вычтем из 2, получим 0 = 0 - это тождество верное при любых х и у, то есть решений бесконечно много
-2
Объяснение:
система имеет бесконечно много решений если мы имеем тождество, не зависящее от переменных:
для этого нужно, чтобы коэфф. при х, у и правая часть совпадали с точностью до множителя. сейчас поясню:
в первом уравнении при х стоит 4, во втором 20, 20 = 4*5
в правой части первого уравнения стоит 3, во втором 15, 15 = 3*5
значит -а*5=10 => а=-2
при этом а, если мы домножим первое уравнение на 5 и вычтем из 2, получим 0 = 0 - это тождество верное при любых х и у, то есть решений бесконечно много