От точки T к прямой проведены перпендикуляр TP и наклонная TR. Определи расстояние от точки T до прямой, если сумма длин перпендикуляра и наклонной равна 37 см, а разность их длин — 1 см. Чему равно расстояние от точки до прямой?
График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
График расположен выше оси ОХ.
Точки пересечения с осью ОХ: .
Графики функций - это параболы , ветви
которых направлены вниз, а вершины в точках (0, а).
При х=0 sin0=0 и точка (0,0) является точкой пересечения
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0 точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ: а=0.
(а-2)(а+2) - 2а(5-а) = (а² - 2²) - 2а * 5 - 2а *(-а) =
= а² - 4 - 10а + 2а² = (а² +2а) - 10а - 4 =
= 3а² -10а - 4
(у-9)² - 3у(у+1) = (у² - 2*у*9 + 9² ) - 3у*у -3у*1 =
= у² - 18у + 81 - 3у² - 3у = (у² - 3у²) - (18у+3у) + 81 =
= - 2у² - 21у + 81
3( х -4)² - 3х² = 3 (х² - 2*х*4 +4²) - 3х² = 3х² - 24х + 48 - 3х² =
= -24х + 48
№2.
25х - х² = 25 * х - х*х = х(25 - х)
2х² - 20ху +50у² = 2(х² - 10ху + 25у²) = 2(х² - 2*х*5у + (5у)² ) =
= 2(х-5у)²
№3.
(с² - b)² - (c²-1)(c² + 1) +2bc² = (c²)² - 2bc² +b² - ( (c²)² - 1²) + 2bc² =
= c⁴ + b² - c⁴ + 1 = b² + 1
при b = - 3 ⇒ (-3)² + 1 = 9 + 1 = 10
№4.
(х - 4)² - 25х² = (х - 4)² - (5х)² = (х-4-5х)(х-4 +5х) = (-4х -4)(6х - 4) =
= -4(х+1) * 2(3х - 2) = - 8(х+1)(3х-2)
a² - b²-4b -4a = (a² - b²) + (-4a -4b) = (a-b)(a+b) - 4(a+b) =
= (a+b)(a-b-4)
№5.
(а+b)² - (a-b)² = 4ab
(a+b +a-b)(a+b -(a-b))= 4ab
2a*(a+b -a+b) = 4ab
2a *2b = 4ab
4ab≡4ab тождество доказано.