В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ulianaazet66
ulianaazet66
08.03.2021 02:52 •  Алгебра

ОТ В уравнении 19 получается 2 решения:
х=-arctg4+пn
x=п/3+пn

Как понять, принадлежит ли какой-нибудь корень из первого решения (с арктангенсом) отрезку [п/3; 2п/3]


ОТ В уравнении 19 получается 2 решения: х=-arctg4+пn x=п/3+пn Как понять, принадлежит ли какой-нибу

Показать ответ
Ответ:
applevip
applevip
15.10.2020 15:51

x=-arctg4+\pi n\ ,\ n\in Z\\\\n=1:\ \ x=-arctg4+\pi \in \Big[\, \dfrac{\pi}{3}\, ;\, \dfrac{2\pi}{3} \Big]\\\\\\-arctg4+\pi \approx -76^\circ +180^\circ =104^\circ\in [\, 60^\circ \, ;\, 120^\circ \, ]\\\\\\\star \ \ arctg\sqrt3=60^\circ \ \ \to \ \ \sqrt3

-90^\circ +180^\circ

Смотри рисунок.

0,0(0 оценок)
Ответ:
жenya
жenya
15.10.2020 15:51

Арктангенс 4 явно больше чем пи/3, потому что тангенс пи/3 это только корень из трех. Ну и как любой арктангенс, он меньше чем пи/2

Значит число "пи-arctg4" лежит между пи/2 и 2пи/3, и разумеется, принадлежит указанному отрезку.


ОТ В уравнении 19 получается 2 решения: х=-arctg4+пn x=п/3+пn Как понять, принадлежит ли какой-нибу
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота