Отметьте на координатной плоскости точки M(0; 4). К(2:0), Р-1;-8). С 1;-5). Проведите прямые МК и СР Найдите координаты точки пересечения данных прямых.(ОТВЕТ ДАЙТЕ ПИСМЕННО)
2x²-4х+b=0 Это решается по дискриминанту вот формула D = b² - 4ac где а - это то число где x² где b - это то число где x где c - это то число где нет x Подставляем значения под формулу D = 4² - 4 * 2 * b = 16 - 8b = 8b дальше находим x1 и x2 по формуле х1= -b + квадратный корень из дискриминанта делим на 2а х2= -b - квадратный корень из дискриминанта делим на 2а Так же : если дискриминант отрицательный то корней нет если дискриминант равен нулю то корень только один если дискриминант больше нуля то уравнение имеет два корня
Это решается по дискриминанту
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то число где x
где c - это то число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле
х1= -b + квадратный корень из дискриминанта
делим на 2а
х2= -b - квадратный корень из дискриминанта
делим на 2а
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня
Алгоритм решения полного квадратного уравнение вида ax^2 + bx + c = 0
выпишем коэффициенты приведенного полного квадратного уравнения, а, b и c;
вспомним формулу нахождения дискриминанта полного квадратного уравнения;
найдем дискриминант для нашего уравнения;
вспомним формулы для нахождения корней квадратного уравнения через дискриминант;
найдем корни для нашего уравнения.
Определим коэффициенты уравнение 3x^2 + 5x – 2 = 0 и найдем дискриминант
3x^2 + 5x – 2 = 0.
Коэффициенты заданного уравнения, а, b и c имеют значения:
а = 3;
b = 5;
c = - 2.
Вспомним формулу, для находится дискриминант приведенного полного квадратного уравнения виде ax^2 + bx + c = 0.
D = b^2 – 4ac.
Находим дискриминант для заданного уравнения.
D = b^2 - 4ac = 5^2 - 4 * 3 * (- 2) = 25 + 24 = 49.
Чтобы найти корни полного квадратного уравнения будет нужно значение квадратного корня из дискриминанта
√D = √49 = 7.
Находим корни полного квадратного уравнения
Вспомним формулы для нахождения корней полного квадратного уравнения. Они выглядят так:
x1 = (- b + √D)/2a;
x2 = (- b - √D)/2a.
Используя их найдем корни для нашего уравнения.
x1 = (- b + √D)/2a = (- 5 + 7)/2 * 3 = 2/6 = 1/3;
x2 = (- b - √D)/2a = (- 5 – 7)/2 * 3 = - 12/6 = - 2.
ответ: х = 1/3; х = - 2 корни уравнения.
Объяснение: