В решении.
Объяснение:
упростите дробно - рациональное выражение:
1) х⁷+х⁵/х⁴+х² =
= (х⁵(х² + 1))/(х²(х² + 1)) =
сократить (разделить) (х² + 1) и (х² + 1) на (х² + 1), х⁵ и х² на х²:
= х³;
2) у⁷+у⁹/у⁴+у² =
= (у⁷(1 + у²))/(у²(1 + у²)) =
сократить (разделить) (1 + у²) и (1 + у²) на (1 + у²), у⁷ и у² на у²:
= у⁵;
3) а⁷-а¹⁰/а⁵-а² =
= (а⁷(1 - а³))/(а²(а³ - 1)) =
= (-а⁷(а³ - 1))/(а²(а³ - 1)) =
сократить (разделить) (а³ - 1) и (а³ - 1) на (а³ - 1), а⁷ и а² на а²:
= -а⁵;
4) х⁶-х⁴/х³+х² =
в числителе разность квадратов, разложить по формуле:
=(х³ - х²)(х³ + х²)/(х³ + х²) =
сократить (разделить) (х³ + х²) и (х³ + х²) на (х³ + х²):
= (х³ - х²);
5) а-2b/2b-а =
= (-(2b - a))/(2b - a) =
= -1;
6) 4(a-b)²/2b-2a =
= (4(a - b)(a - b))/ (-2(a - b)) =
сократить (разделить) (a - b) и (a - b) на (a - b), 4 и 2 на 2:
= (2(a - b))/(-1) =
= -2(a - b);
7) (-a-b)²/a+b =
= (a + b)²/(a + b) =
= (a + b)(a + b)/(a + b) =
сократить (разделить) (a + b) и (a + b) на (a + b):
= (a + b);
8) (a-b)²/(b-a)² =
= (a - b)²/(-a + b)² =
= 1.
Задание 1: образовать краткую форму прилагательных. Изменить по родам и числам
Светлый, могучий, вкусный ( )
Задание 2: найти и подчеркнуть краткие прилагательные в предложении как член
предложения
Мандарин удивительно свеж. Во время каникул школа пуста. Новогодняя елка очень красива. Воздух
так чист и свеж, как поцелуй ребенка, солнце ярко, небо сине. ( )
Задание 3: образуйте степени сравнения прилагательных (простые и составные)
(1) Бойкий, (2) звонкий, (3) красивый, (4) хороший, (5) сладкий. ( )
Задание 4: вставьте, где необходимо, пропущенные буквы н или нн.
Ремесле..ый, пенсио..ый, глиня..ый, звери..ый, бульо..ый, инфекцио..ый, единовреме..ый,
муравьи..ый, стекля..ый
( )
В решении.
Объяснение:
упростите дробно - рациональное выражение:
1) х⁷+х⁵/х⁴+х² =
= (х⁵(х² + 1))/(х²(х² + 1)) =
сократить (разделить) (х² + 1) и (х² + 1) на (х² + 1), х⁵ и х² на х²:
= х³;
2) у⁷+у⁹/у⁴+у² =
= (у⁷(1 + у²))/(у²(1 + у²)) =
сократить (разделить) (1 + у²) и (1 + у²) на (1 + у²), у⁷ и у² на у²:
= у⁵;
3) а⁷-а¹⁰/а⁵-а² =
= (а⁷(1 - а³))/(а²(а³ - 1)) =
= (-а⁷(а³ - 1))/(а²(а³ - 1)) =
сократить (разделить) (а³ - 1) и (а³ - 1) на (а³ - 1), а⁷ и а² на а²:
= -а⁵;
4) х⁶-х⁴/х³+х² =
в числителе разность квадратов, разложить по формуле:
=(х³ - х²)(х³ + х²)/(х³ + х²) =
сократить (разделить) (х³ + х²) и (х³ + х²) на (х³ + х²):
= (х³ - х²);
5) а-2b/2b-а =
= (-(2b - a))/(2b - a) =
= -1;
6) 4(a-b)²/2b-2a =
= (4(a - b)(a - b))/ (-2(a - b)) =
сократить (разделить) (a - b) и (a - b) на (a - b), 4 и 2 на 2:
= (2(a - b))/(-1) =
= -2(a - b);
7) (-a-b)²/a+b =
= (a + b)²/(a + b) =
= (a + b)(a + b)/(a + b) =
сократить (разделить) (a + b) и (a + b) на (a + b):
= (a + b);
8) (a-b)²/(b-a)² =
= (a - b)²/(-a + b)² =
= 1.
Задание 1: образовать краткую форму прилагательных. Изменить по родам и числам
Светлый, могучий, вкусный ( )
Задание 2: найти и подчеркнуть краткие прилагательные в предложении как член
предложения
Мандарин удивительно свеж. Во время каникул школа пуста. Новогодняя елка очень красива. Воздух
так чист и свеж, как поцелуй ребенка, солнце ярко, небо сине. ( )
Задание 3: образуйте степени сравнения прилагательных (простые и составные)
(1) Бойкий, (2) звонкий, (3) красивый, (4) хороший, (5) сладкий. ( )
Задание 4: вставьте, где необходимо, пропущенные буквы н или нн.
Ремесле..ый, пенсио..ый, глиня..ый, звери..ый, бульо..ый, инфекцио..ый, единовреме..ый,
муравьи..ый, стекля..ый
( )
Объяснение: