Относительная частота попадания стрелка по мишени равна 0,97. Сколько раз, скорее всего, он попадет по мишени, сделав 500 выстрелов? варианты ответов a. 515 b. 268 c. 485 d. 97
Искомое количество чисел найдем так: от общего количества четырехзначных чисел с неповторяющимися цифрами отнимем количество четырехзначных чисел с неповторяющимися нечетными цифрами.
Итак, ищем общее количество четырехзначных чисел с неповторяющимися цифрами.
На первом месте может стоять любая из цифр от 1 до 9 (9 вариантов). На втором месте - любая из 9 (8 неиспользованных на предыдущем шаге + цифра "0"), на третьем - любая из 8 оставшихся, на четвертом - любая из 7 оставшихся. Тогда общее количество чисел:
Ищем количество четырехзначных чисел с неповторяющимися нечетными цифрами.
На первом месте может стоять любая из нечетных цифр (5 вариантов). На втором месте - любая из 4 оставшихся, на третьем - любая из 3 оставшихся, на четвертом - любая из 2 оставшихся. Тогда общее количество чисел:
Значит, искомое количество четырехзначных чисел с неповторяющимися цифрам, в записи которых есть хотя бы одна чётная цифра:
Искомое количество чисел найдем так: от общего количества четырехзначных чисел с неповторяющимися цифрами отнимем количество четырехзначных чисел с неповторяющимися нечетными цифрами.
Итак, ищем общее количество четырехзначных чисел с неповторяющимися цифрами.
На первом месте может стоять любая из цифр от 1 до 9 (9 вариантов). На втором месте - любая из 9 (8 неиспользованных на предыдущем шаге + цифра "0"), на третьем - любая из 8 оставшихся, на четвертом - любая из 7 оставшихся. Тогда общее количество чисел:
Ищем количество четырехзначных чисел с неповторяющимися нечетными цифрами.
На первом месте может стоять любая из нечетных цифр (5 вариантов). На втором месте - любая из 4 оставшихся, на третьем - любая из 3 оставшихся, на четвертом - любая из 2 оставшихся. Тогда общее количество чисел:
Значит, искомое количество четырехзначных чисел с неповторяющимися цифрам, в записи которых есть хотя бы одна чётная цифра:
ответ: 4416 чисел
В решении.
Объяснение:
Доказать тождество:
(решить левую часть, если ответ равен правой, тождество доказано).
1) (3х - 1)/(√3х - 1) - √3х=
общий знаменатель (√3х - 1), надписываем над √3х дополнительный множитель:
= [3х-1 -√3х * (√3х - 1)] / (√3х - 1)=
=(3x - 1 - 3x + √3) / (√3х - 1)=
=(√3х - 1) / (√3х - 1) = 1;
1 = 1, тождество доказано.
2) (3х+а)/(√5х -√а) + √5х + √а=
общий знаменатель (√5х -√а), надписываем над √5х и √а дополнительные множители:
= [3x+a + √5х * (√5х -√а) + √а * (√5х -√а)] / (√5х -√а)=
=(3х+а+5х-5ах+5ах-а) / (√5х -√а)=
= 8х/(√5х -√а);
8х/(√5х -√а) = 8х/(√5х -√а), тождество доказано.