Отрезки ас и вd пересекаются в точке м, которая является их серединой, ∠свм=25, ∠мсв=40. докажите,что δамd=δcмв. найти угол а в δамd. запишите решение и ответ. *
1) Область определения: x ∈ (-∞; ∞). 2) Четность-нечетность:
Т.к. и , то функция является функцией общего вида. 3) Точки пересечения с Ox. Решим исходное уравнение при y = 0. (метод решения: Виета-Кардано) Получим один корень: x = 0.148 - абсцисса точки пересечения графка с осью Ox. Координаты точки: (0.148; 0)
Точка пересечения с Oy. Найдем y, подставив в уравнение x = 0. Получим: y = -5. Координаты точки: (0, -5).
4) Так как функция кубическая, то точек экстремума не имеет.
5) Первая производная.
2. Вторая производная.
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
Приравняем её нулю ( при х не равном 0 можно только числитель).
x^3 - 8 = 0.
x^3 = 8, х = ∛8 = 2. Это критическая точка.
С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
2) Четность-нечетность:
Т.к. и , то функция является функцией общего вида.
3) Точки пересечения с Ox. Решим исходное уравнение при y = 0. (метод решения: Виета-Кардано)
Получим один корень: x = 0.148 - абсцисса точки пересечения графка с осью Ox. Координаты точки: (0.148; 0)
Точка пересечения с Oy. Найдем y, подставив в уравнение x = 0. Получим: y = -5. Координаты точки: (0, -5).
4) Так как функция кубическая, то точек экстремума не имеет.
5) Первая производная.
2. Вторая производная.
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
Откуда точка перегиба:
x = 5/3
На промежутке: (-∞ ;5/3)
Значит, функция выпукла.
На промежутке (5/3; ∞)
Значит, функция вогнута.
6)
7(график в приложениях)
Как мог.. Работа объемная, конечно)
Дана функция
Производная её равна: y' = (3x^2*x^2 - 2x*(x^3 + 4))/x^4 = (x^3 - 8)/x^3.
Приравняем её нулю ( при х не равном 0 можно только числитель).
x^3 - 8 = 0.
x^3 = 8, х = ∛8 = 2. Это критическая точка.
С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x = -1 0 1 2 3
y' = 9 - -7 0 0,7037.
• Минимум функции в точке: х = 2, у = 3.
• Максимума функции нет.
• Возрастает на промежутках: (-∞; 0) U (2; ∞).
• Убывает на промежутке: (0; 2).