В 8 часов, утром, из Лённеберги выехал Эмиль на лошади со скоростью 16 км/ч, а позже навстречу ему из их родного хутора Катхульта выехал отец на телеге со скоростью 14 км/ч, чтоб встретить Эмиля и постараться избежать очередной его шалости. Расстояние между Лённебергой и Катхультом 49 км, а встретились отец и сын на расстоянии 21 км от Катхульта и вместе поехали домой. В какое время отец Эмиля выехал из Катхульта?
Формула движения: S=v*t
S - расстояние v - скорость t – время
1) Найти время в пути отца:
21 : 14 = 1,5 (часа) = 1 и 1/2 часа = 1 час 30 минут.
2) Найти путь, который проехал сын до места встречи:
49 - 21 = 28 (км).
3) Найти время, которое сын провёл в пути:
28 : 16 = 1,75 (часа) = 1 и 3/4 часа = 1 час 45 минут.
4) Сын выехал в 8 часов, в пути был 1 час 45 минут, найти время встречи:
8:00 + 1:45 = 9:45 (часов).
5) На момент встречи отец был в пути 1 час 30 минут, найти время, в которое отец выехал из дома:
Объяснение:1. Заметим, что никакое число, не превосходящее 1015, не может иметь высоту 4. Действительно, наименьшее число высоты 4 — это
2222=216, при этом это число больше 1015.
2. Между тем числа высоты 3, не превосходящие 1015, существуют. Например, 16=222 имеет высоту 3. Таким образом, задача свелась к подсчёту количества чисел высоты 3, не превосходящих 1015.
3. Заметим, что
29≤1015≤210,
36≤1015≤37,
44≤1015≤45,
54≤1015≤55,
63≤1015≤64.
4. Найдём количество чисел высоты 3, не превосходящих 1015. Это то же самое, что найти количество решений неравенства:
x1x2x3≤1015, xi≥2.
Если x1=2, то x2x3≤9, отсюда x2=x3=2, или x2=2, x3=3, или x2=3, x3=2. Отсюда получаем 3 решения.
Далее, если x1=3,4,5, получаем, что x2=x3=2, что даёт ещё три решения.
Наконец, при x1≥6 получаем, что x2x3≤3. Но так как xi≥2, то таких x2, x3 не существует.
5. Таким образом, получаем 3+3=6 чисел максимальной высоты, не превосходящих 1015.
В решении.
Объяснение:
В 8 часов, утром, из Лённеберги выехал Эмиль на лошади со скоростью 16 км/ч, а позже навстречу ему из их родного хутора Катхульта выехал отец на телеге со скоростью 14 км/ч, чтоб встретить Эмиля и постараться избежать очередной его шалости. Расстояние между Лённебергой и Катхультом 49 км, а встретились отец и сын на расстоянии 21 км от Катхульта и вместе поехали домой. В какое время отец Эмиля выехал из Катхульта?
Формула движения: S=v*t
S - расстояние v - скорость t – время
1) Найти время в пути отца:
21 : 14 = 1,5 (часа) = 1 и 1/2 часа = 1 час 30 минут.
2) Найти путь, который проехал сын до места встречи:
49 - 21 = 28 (км).
3) Найти время, которое сын провёл в пути:
28 : 16 = 1,75 (часа) = 1 и 3/4 часа = 1 час 45 минут.
4) Сын выехал в 8 часов, в пути был 1 час 45 минут, найти время встречи:
8:00 + 1:45 = 9:45 (часов).
5) На момент встречи отец был в пути 1 час 30 минут, найти время, в которое отец выехал из дома:
9:45 - 1:30 = 8:15 (часов).
Отец выехал из дома в 8 часов 15 минут.
ответ:6
Объяснение:1. Заметим, что никакое число, не превосходящее 1015, не может иметь высоту 4. Действительно, наименьшее число высоты 4 — это
2222=216, при этом это число больше 1015.
2. Между тем числа высоты 3, не превосходящие 1015, существуют. Например, 16=222 имеет высоту 3. Таким образом, задача свелась к подсчёту количества чисел высоты 3, не превосходящих 1015.
3. Заметим, что
29≤1015≤210,
36≤1015≤37,
44≤1015≤45,
54≤1015≤55,
63≤1015≤64.
4. Найдём количество чисел высоты 3, не превосходящих 1015. Это то же самое, что найти количество решений неравенства:
x1x2x3≤1015, xi≥2.
Если x1=2, то x2x3≤9, отсюда x2=x3=2, или x2=2, x3=3, или x2=3, x3=2. Отсюда получаем 3 решения.
Далее, если x1=3,4,5, получаем, что x2=x3=2, что даёт ещё три решения.
Наконец, при x1≥6 получаем, что x2x3≤3. Но так как xi≥2, то таких x2, x3 не существует.
5. Таким образом, получаем 3+3=6 чисел максимальной высоты, не превосходящих 1015.