Теперь понятно, что можно ввести замену и продолжать решение уже дробно-рационального уравнения.
Советую запомнить приём, который я здесь употребил. Он состоит вот в чём. Мы помним формулу сокращённого умножения:
Отсюда я могу легко выразить сумму квадратов:
Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y. Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его. Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.
Делаем замену:
После замены получаем:
Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это):
Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой) - этот корень не удовлетворяет нашему уравнению. Следовательно, возвращаясь к переменной x, получаем простейшее уравнение:
Отсюда
Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.
1)а.Значение функции У=-2х+5 при х =0,5 находится подстановкой этого значения в формулу у = -2*0,5 + 5 = -1 + 5 = 4. б. значение аргумента при у=-5: -2х+5 = -5 2х = 10 х = 5. в. Чтобы узнать, принадлежит ли графику функции точки А(1;3)В(-1;6), надо подставить в формулу значение аргумента х1 = 1, х2 = -1 и сравнить значение функции и ординату точки. Если совпадают - то точка принадлежит графику функции. у1 = -2*1 + 5 = -2 + 5 = 3 - совпадают. у2 = -2*(-1) + 5 = 2 + 5 = 7 - не совпадают. 2) График функции У=3х+4 - это прямая линия. Координаты точек пересечения графика с осями координат определяются приравниванием х или у нулю. 3*0+4 = 4 = точка пересечения оси ординат (ось у) 3х+4 = 0 3х = -4 х = -4/3 = -1(1/3) - точка пересечения оси абсцисс (ось х). 3) График функции у=кх проходит через начало координат. Коэффициент к = dy/dx = -6 / 2 = -3. График проходит через 0 и заданную точку. 4) Точка пересечения графиков определяется решением уравнения -4х +1,3 = х - 2,7 5х = 4 х = 4/5 = 0,8 Вторая координата находится подстановкой полученного значения х в формулу одной из прямых у = -4*0,8 + 1,3 = -3,2 + 1,3 = -1,9 или у = 0,8 - 2,7 = -1,9. 5) Параллельные графики имеют равные коэффициенты при х: графику У=-3х+12 параллельна прямая У=3х-5.
Далее:
Таким образом, получаем уравнение:
Теперь понятно, что можно ввести замену и продолжать решение уже дробно-рационального уравнения.
Советую запомнить приём, который я здесь употребил. Он состоит вот в чём.
Мы помним формулу сокращённого умножения:
Отсюда я могу легко выразить сумму квадратов:
Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y.
Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его.
Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.
Делаем замену:
После замены получаем:
Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это):
Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой)
- этот корень не удовлетворяет нашему уравнению.
Следовательно, возвращаясь к переменной x, получаем простейшее уравнение:
Отсюда
Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.
б. значение аргумента при у=-5:
-2х+5 = -5 2х = 10 х = 5.
в. Чтобы узнать, принадлежит ли графику функции точки А(1;3)В(-1;6), надо подставить в формулу значение аргумента х1 = 1, х2 = -1 и сравнить значение функции и ординату точки.
Если совпадают - то точка принадлежит графику функции.
у1 = -2*1 + 5 = -2 + 5 = 3 - совпадают.
у2 = -2*(-1) + 5 = 2 + 5 = 7 - не совпадают.
2) График функции У=3х+4 - это прямая линия.
Координаты точек пересечения графика с осями координат определяются приравниванием х или у нулю.
3*0+4 = 4 = точка пересечения оси ординат (ось у)
3х+4 = 0 3х = -4 х = -4/3 = -1(1/3) - точка пересечения оси абсцисс (ось х).
3) График функции у=кх проходит через начало координат.
Коэффициент к = dy/dx = -6 / 2 = -3.
График проходит через 0 и заданную точку.
4) Точка пересечения графиков определяется решением уравнения
-4х +1,3 = х - 2,7
5х = 4
х = 4/5 = 0,8
Вторая координата находится подстановкой полученного значения х в формулу одной из прямых у = -4*0,8 + 1,3 = -3,2 + 1,3 = -1,9
или у = 0,8 - 2,7 = -1,9.
5) Параллельные графики имеют равные коэффициенты при х:
графику У=-3х+12 параллельна прямая У=3х-5.