Вчём суть чётности( нечётности) функции? есть правила: 1) если f(-x) = f(x) , то f(x) - чётная переводим на простой язык: если вместо "х" подставить "-х" и функция при этом не изменилась, то она ( собака серая) чётная. 2) если f(-x) = - f(x) , то f(x) - нечётная переводим на простой язык: если вместо "х" подставить "-х" и функция при этом поменяла знак, то она ( собака серая) нечётная. наш пример: f(x) = x⁴ + 0,5x³ f(-x) = (-x)⁴ + 0,5*(-x)³ = x⁴ - 0,5x³ ≠ f(x) ≠ -f(x) вывод: данная функция ни чётная, ни нечётная.
3) y=2x-2 Задаем два значения Х и получаем два значения У. х=0, у=-2 х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую. Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит. Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции
доп множитель для первой дроби 5, для второй 3, а для двойки 15
получаем
5х+40-3х+6=30
2х= -10
х= -5
2) {x=5+2y, 3(5+2y)+5y=26
{x=5+2y, 15+6y+5y=26
{x=5+2y, 11y=11
{y=1, x=7
3) y=2x-2 Задаем два значения Х и получаем два значения У.
х=0, у=-2
х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую.
Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит.
Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции